学习使用signal

父子进程间轮流+1输出,linux环境下运行

#include<stdio.h>
#include<signal.h>
#include<unistd.h>
#include <sys/types.h>
//#include<fcntl.h>
//#include<stdlib.h>
int num=0;
int flag=0;
void parent()
{
  /*加sleep(1)的原因是防止flag变得太快,导致程序锁死
    eg:1执行玩后父进程收到信号,执行parent,然后接着执行2,且执行2的flag=0,然后执行1的flag=0,这样程序就锁死了*/
        sleep(1);    
        flag=1;
        printf("num=%d\n",num);
        num+=2;
}
void kid()
{
        sleep(1);
        flag=1;
        printf("num=%d\n",num);
        num+=2;
}
int main()
{
        pid_t pid=fork();
        if(pid==0)
        {
                num=1;
                signal(SIGUSR2,kid);
                pid_t ppid=getppid();
                while(1)
                {
                        if(flag==1)
                        {
                                kill(ppid,SIGUSR1);//1
                                flag=0;
                        }
                }
        }
        if(pid>0)
        {
                usleep(10);
                num=2;
                signal(SIGUSR1,parent);
                kill(pid,SIGUSR2);
                while(1)
                {
                        if(flag==1)
                        {
                                kill(pid,SIGUSR2);//2
                                flag=0;
                        }
                }
        }

        return 0;
}--                                                                                                                                                                      
弱监督学习是一种机器学习方法,其中使用的训练数据是不完全标记的,或者只有部分标记。传统的监督学习方法通常需要大量的标记数据,这些数据需要手动标记,费时且昂贵。相比之下,弱监督学习可以通过利用较少的标记样本和大量的未标记样本来进行训练。 在弱监督学习中,标记数据通常被表示为弱信号或指示信号。这些信号可以是某些类别的存在或不存在,或者是与实例相关的一些约束条件。根据这些弱信号,通过构建模型进行训练,可以推断出分类或注释信息。 弱监督学习可以通过多种方法实现。其中一种方法是多实例学习(MIL),其中一个包含多个实例的包被视为正样本,而不包含正样本实例的包被视为负样本。另一种方法是知识迁移,通过利用其他任务中的标记数据来提供弱监督信号。还有一些其他的方法,例如主动标注和生成模型等。 弱监督学习的应用非常广泛。在计算机视觉领域,可以通过弱监督学习来识别图像中的物体或场景。在自然语言处理领域,可以通过弱监督学习来进行文本分类或情感分析。在推荐系统中,可以通过弱监督学习来提高用户对商品的推荐准确性。 总的来说,弱监督学习是一种有效的机器学习方法,可以在只有部分标记数据的情况下进行训练。通过利用弱信号或指示信号,可以实现对未标记数据的分类或注释,从而在各种应用领域中提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值