第四部分 一阶逻辑基本概念

目录

主要内容

一阶逻辑命题符号化

一阶逻辑公式及其解释

个体词——所研究对象中可以独立存在的具体或抽象的客体

谓词——表示个体词性质或相互之间关系的词

量词——表示数量的词

例题:

例1

例2 

例如

例题:

例如

例3 

例4 

注意:

基本要求


主要内容
一阶逻辑命题符号化
个体词、谓词、量词
一阶逻辑命题符号化
一阶逻辑公式及其解释
一阶语言
合式公式
合式公式的解释
永真式、矛盾式、可满足式
个体词——所研究对象中可以独立存在的具体或抽象的客体
个体常项 :具体的事务,用 a , b , c 表示
个体变项 :抽象的事物,用 x , y , z 表示
个体域 ( 论域 )—— 个体变项的取值范围
有限个体域,如 { a , b , c }, {1, 2}
无限个体域,如 N, Z, R, …
全总个体域 —— 由宇宙间一切事物组成
谓词——表示个体词性质或相互之间关系的词
谓词常项 , F ( a ) a 是人
谓词变项 , F ( x ) x 具有性质 F n n 1 )元谓词
一元谓词 ( n =1)—— 表示性质
多元谓词 ( n 2)—— 表示事物之间的关系
L ( x , y ) x y 有关系 L L ( x , y ) x y
0 元谓词 —— 不含个体变项的谓词 , 即命题常项 或命题变项
量词——表示数量的词
全称量词 : 表示所有的
x : 对个体域中所有的 x
, xF ( x ) 表示个体域中所有的 x 具有性质 F
x yG ( x , y ) 表示个体域中所有的 x y 有关系 G
存在量词 : 表示存在 , 有一个
x : 个体域中有一个 x
, xF ( x ) 表示个体域中有一个 x 具有性质 F
x yG ( x , y ) 表示个体域中存在 x y 有关系 G
x yG ( x , y ) 表示对个体域中每一个 x 都存在一个 y 使得 x y 有关系 G
x yG ( x , y ) 表示个体域中存在一个 x 使得对每一个 y , x y 有关系 G
例题:

下列命题的个体域为实数集合R,命题真值为1的有(     )。

A. 对所有的x,都存在y使得x\cdot y=0

B. 存在x,使得对所有y都有x\cdot y=0

C. 对所有的x,都存在y使得y=x+1

D. 对所有的x和y,都有x\cdot y=y\cdot x

E. 对任意的x和y,都有x\cdot y=x+y

F. 对于任意的x,存在y使得x^{2}+y^{2}<0

解:

选择ABCD

对于A,y为实数范围存在y=0,使所有的x,使x·y=0,所以为1

对于B,x为实数范围存在x=0,使所有的y,使x·y=0,所以为1

对于C,对所有的实数x,都存在实数y-1,y-1=x,所以为1

对于D,对所有的x,y都有x·y=y·x,为乘法交换律,所以为1

对于E,举一个反例即可,3*3≠3+3,9≠6,所以为0

对于F,当x大于0,x的平方加任何一个大于等于0的数都不会小于0,所以为0

1

0元谓词将命题符号化

(1) 墨西哥位于南美洲
(2) ^{\sqrt{2}}是无理数仅当 ^{\sqrt{3}}是有理数
(3) 如果 2>3 ,则 3<4
解:在命题逻辑中:
(1) p , p为墨西哥位于南美洲        真命题
(2) p q , 其中 , p 是无理数, q 是有理数.        p真,q假为假,假命题
(3) p q , 其中, p 2>3 q :3<4.        p,q 都为真,真命题
在一阶逻辑中:
(1) F ( a ) ,其中, a :墨西哥, F ( x ) x 位于南美洲 .
(2) F( ^{\sqrt{2}})→ G(^{\sqrt{3}} ), 其中, F ( x ) x 是无理数, G ( x ) x 是有理数
(3) F (2, 3) G (3, 4) ,其中, F ( x , y ) x > y G ( x , y ) x < y 
例2 

在一阶逻辑中将下面命题符号化

(1) 没有不呼吸的人
(2) 不是所有的人都喜欢吃糖
(1) F ( x ): x 是人 , G ( x ): x 呼吸
¬∃ x ( F ( x ) ∧¬ G ( x )) 或  x ( F ( x ) G ( x ))
(2) F ( x ): x 是人 , G ( x ): x 喜欢吃糖
¬∀ x ( F ( x ) G ( x )) 或 ∃ x ( F ( x ) ∧¬ G ( x ))
两种表示都可以
定义 4.1  在公式 xA xA 中,称 x 指导变元 A 为相应 量词的 辖域 . x x 的辖域中, x 的所有出现都称为 约束 出现 A 中不是约束出现的其他变项均称为是 自由出现 .
例如
x ( F ( x , y ) G ( x , z )) x 为指导变元, ( F ( x , y ) G ( x , z )) x 的辖域, x 的两次出现均为约束出现, y z 均为自由出现
又如
x ( F ( x , y , z ) →∀ y ( G ( x , y ) H ( x , y , z ))), x 中的 x 是指导变元 , 辖域为 ( F ( x , y , z ) →∀ y ( G ( x , y ) H ( x , y , z ))). y 中的 y 是指导变元 , 域为 ( G ( x , y ) H ( x , y , z )). x 3 次出现都是约束出现 , y 的第一次出 现是自由出现 , 2 次是约束出现 , z 2 次出现都是自由出现
简单来说包含∀或∃的字母用括号包括的部分,如果部分里面有相同字母就为约束出现,如果不同则为自由出现
例题:

指出下列公式中各个体变项的自由出现和约束出现。

(1)\forall x(F(x)\rightarrow G(x,y)),其中x自由出现(a)次,约束出现(b)次,y自由出现(c)次,约束出现(d)次

(2)\forall xF(x,y)\rightarrow\exists y G(x,y),其中x自由出现(e)次,约束出现(f)次,y自由出现(g)次,约束出现(h)次。

(3)\forall x\exists y(F(x,y) \wedge G(y,z))\vee \exists xH(x,y,z),其中x自由出现(i)次,约束出现(j)次,y自由出现(k)次,约束出现(l)次,z自由出现(m)次,约束出现(n)次。


解:

(a) 0

(b) 2

(c) 1

(d) 0

(e) 1

(f) 1

(g) 1

(h) 1

(i) 0

(j) 2

(k) 1

(l) 2

(m) 2

(n) 0

被存在或任意字母包裹的相同字母为约束出现,其他均为自由出现

定义4.2 若公式A中不含自由出现的个体变项,则称A封闭的公式,简称闭式.

例如
x y ( F ( x ) G ( y ) H ( x , y )) 为闭式, x ( F ( x ) G ( x , y )) 不是闭式
例3 

给定解释 I 如下:

(a) 个体域 D =R
(b)\bar{a}  = 0
(c)\bar{f} ( x , y ) = x + y , g ( x , y ) = x y
(d)\bar{F} ( x , y ): x = y
写出下列公式在 I 下的解释 , 并指出它的真值 .
(1) xF ( f ( x , a ), g ( x , a ))
        ∃x ( x +0= x⋅0)                 实数中存在x+0=x*0,为真
(2) x y(F ( x , y)→ F ( f ( x , y ), g ( x , y ))
        ∀x y ( x =yx + y = x y)        任意两个实数相等并不能推出x+y=x*y,为假      
(3) xF ( g ( x , y ), a )
        ∀x ( x y=0)         不知道y的值,真值不定 , 不是命题
定理 4.1 闭式在任何解释下都是命题
注意 : 不是闭式的公式在解释下可能是命题 , 也可能不是命题 .
定义 4.3  若公式 A 在任何解释下均为真 , 则称 A 永真式 ( 逻辑 有效式 ). A 在任何解释下均为假 , 则称 A 矛盾式 ( 永假式 ). 若至少有一个解释使 A 为真 , 则称 A 可满足式

几点说明:
永真式为可满足式,但反之不真
判断公式是否是可满足的 ( 永真式 , 矛盾式 ) 是不可判定的
定义 4.4  A 0 是含命题变项 p 1 , p 2 , …, p n 的命题公式, A 1 , A 2 , …, A n n 个谓词公式,用 A i (1 i n ) 处处代替 A 0 中的 p i 所得公式 A 称为 A 0 代换实例 .
例如
F ( x ) G ( x ), xF ( x ) →∃ yG ( y ) 等都是 p q 的代换实例 .
定理 4.2 重言式的代换实例都是永真式,矛盾式的代换实例 都是矛盾式
例4 

判断下列公式中,哪些是永真式,哪些是矛盾式?

(1) xF ( x ) ( x yG ( x , y ) →∀ xF ( x ))
重言式 p ( q p ) 的代换实例,故为永真式
(2) ¬ ( xF ( x ) →∃ yG ( y )) ∧∃ yG ( y )
矛盾式 ¬ ( p q ) q 的代换实例,故为永假式
(3) x ( F ( x ) G ( x ))
解释 I 1 : 个体域 N, F ( x ): x >5, G ( x ): x >4, 公式为真
解释 I 2 : 个体域 N, F ( x ): x <5, G ( x ): x <4, 公式为假
结论 : 非永真式的可满足式
注意:

对于解释可以有很多种,可以用自己的想法解释

基本要求
准确地将给定命题符号化
理解一阶语言的概念
深刻理解一阶语言的解释
熟练地给出公式的解释
记住闭式的性质并能应用它
深刻理解永真式、矛盾式、可满足式的概念 , 会判断简 单公式的类型
  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星与星熙.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值