标签:线段树,拓扑排序
题目
Description
给定一个长度为n的正整数序列a,每个数都在1到 109 10 9 范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示 a[l],a[l+1],...,a[r−1],a[r] a [ l ] , a [ l + 1 ] , . . . , a [ r − 1 ] , a [ r ] 里这k个数中的任意一个都比任意一个剩下的 r−l+1−k r − l + 1 − k 个数大(严格大于,即没有等号)。
请任意构造出一组满足条件的方案,或者判断无解。
Input
第一行包含三个正整数 n,s,m(1≤s≤n≤100000,1≤m≤200000) n , s , m ( 1 ≤ s ≤ n ≤ 100000 , 1 ≤ m ≤ 200000 ) 。
接下来s行,每行包含两个正整数 p[i],d[i](1≤p[i]≤n,1≤d[i]≤109) p [ i ] , d [ i ] ( 1 ≤ p [ i ] ≤ n , 1 ≤ d [ i ] ≤ 10 9 ) ,表示已知 a[p[i]]=d[i] a [ p [ i ] ] = d [ i ] ,保证p[i]递增。
接下来m行,每行一开始为三个正整数 l[i],r[i],k[i](1≤l[i]<r[i]≤n,1≤k[i]≤r[i]−l[i]) l [ i ] , r [ i ] , k [ i ] ( 1 ≤ l [ i ] < r [ i ] ≤ n , 1 ≤ k [ i ] ≤ r [ i ] − l [ i ] ) ,接下来 k[i] k [ i ] 个正整数 x[1],x[2],...,x[k[i]](l[i]≤x[1]<x[2]<...<x[k[i]]≤r[i]) x [ 1 ] , x [ 2 ] , . . . , x [ k [ i ] ] ( l [ i ] ≤ x [ 1 ] < x [ 2 ] < . . . < x [ k [ i ] ] ≤ r [ i ] ) ,表示这k[i]个数中的任意一个都比任意一个剩下的 r[i]−l[i]+1−k[i] r [ i ] − l [ i ] + 1 − k [ i ] 个数大。
∑k≤300,000 ∑ k ≤ 300 , 000
Output
若无解,则输出NIE。
否则第一行输出TAK,第二行输出n个正整数,依次输出序列a中每个数。
Sample Input
5 2 2
2 7
5 3
1 4 2 2 3
4 5 1 4
Sample Output
TAK
6 7 1000000000 6 3
分析
首先考虑朴素建图
如果新插入一个节点 p p ,那么向所有的条件给定的连一条边权为0的边 p−>x[i] p − > x [ i ]
向所有 l−>r l − > r 中不是 x[i] x [ i ] 的点 t t 连一条边权为1的边
那么一个点i的值 f[i] f [ i ] 就是 max(a[i],f[j]+Wj−>i) m a x ( a [ i ] , f [ j ] + W j − > i )
但是这样建图的状态数为 O(n2) O ( n 2 )
考虑用线段树优化建图
发现所有的边 t−>p t − > p 中的 t t 实际上是若干个区间
用线段树将这些区间分解成个区间然后由区间向 p p <script type="math/tex" id="MathJax-Element-782">p</script>连边即可
code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
#define mem(x,num) memset(x,num,sizeof x)
#define reg(x) for(int i=last[x];i;i=e[i].next)
using namespace std;
inline ll read(){
ll f=1,x=0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
//**********head by yjjr**********
#define mid ((l+r)>>1)
#define inf 1e9
const int maxn=4e5+6,maxm=2e6+6;
int n,m,cnt,_cnt,trtot,tot,rt,pos[maxn<<2],du[maxn<<2],last[maxn<<2];
int ls[maxn],rs[maxn],a[maxn],que[maxm],f[maxn],head=0,tail=0;
struct edge{int to,next,w;}e[maxm];
void insert(int u,int v,int w){
e[++cnt]=(edge){v,last[u],w};last[u]=cnt;du[v]++;
}
void build(int &x,int l,int r){
x=++trtot;
if(l==r){pos[l]=x;return;}
build(ls[x],l,mid);build(rs[x],mid+1,r);
insert(ls[x],x,0);insert(rs[x],x,0);
}
void modify(int x,int l,int r,int ql,int qr){
if(ql==l&&r==qr){insert(x,trtot,1);return;}
if(qr<=mid)modify(ls[x],l,mid,ql,qr);
else if(ql>mid)modify(rs[x],mid+1,r,ql,qr);
else{modify(ls[x],l,mid,ql,mid);modify(rs[x],mid+1,r,mid+1,qr);}
}
int main()
{
n=read(),_cnt=read(),m=read();
build(rt,1,n);int x;
rep(i,1,_cnt)x=read(),a[pos[x]]=read();
rep(i,1,m){
int l=read()-1,r=read(),t=read(),x;
trtot++;
while(t--){
x=read();insert(trtot,pos[x],0);
if(l+1<x)modify(rt,1,n,l+1,x-1);l=x;
}
if(x<r)modify(rt,1,n,x+1,r);
}
rep(i,1,trtot)
if(!du[i])que[++tail]=i,f[i]=1;
while(head<tail){
int now=que[++head];
if(f[now]>inf){puts("NIE");return 0;}
if(f[now]>a[now]&&a[now]){puts("NIE");return 0;}
else f[now]=max(f[now],a[now]);
reg(now){
f[e[i].to]=max(f[e[i].to],f[now]+e[i].w);
du[e[i].to]--;if(!du[e[i].to])que[++tail]=e[i].to;
}
}
if(tail<trtot){puts("NIE");return 0;}
puts("TAK");
rep(i,1,n)printf("%d ",f[pos[i]]);
return 0;
}