Chapter 3 线性代数

目录

向量、矩阵、张量的定义

向量与矩阵运算

张量的运算

矩阵的逆和伪逆

行列式

线性方程组

二次型和正定性

矩阵分解


向量、矩阵、张量的定义

标量:常数x

向量:(x_{1},x_{2},\cdots ,x_{n})\epsilon \mathbb{R}^{n}n维向量

           ps:x_{-1}=(x_{2},x_{3},\cdots ,x_{n})x_{-i}=(x_{1},\cdots ,x_{i-1},x_{i+1},\cdots ,x_{n})

矩阵:A_{i,j}=\begin{pmatrix} a_{11} &a_{12} &\cdots & a_{1n}\\ a_{21} & \cdots & \cdots & a_{2n}\\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}& a_{m2} & \cdots & a_{mn} \end{pmatrix},m行n列

张量:A_{i,j,k,l},Tensor Flow

向量与矩阵运算

\overrightarrow{x}=\begin{pmatrix} x_{1}\\ \vdots \\ x_{n}\\ \end{pmatrix},\overrightarrow{y}=\begin{pmatrix} y_{1}\\ \vdots \\ y_{n}\\ \end{pmatrix}\overrightarrow{x}+\overrightarrow{y}=\begin{pmatrix} x_{1}+y_{1}\\ \vdots \\ x_{n}+y_{n}\\ \end{pmatrix}

范数,由距离推广得到的。

\left \| \overrightarrow{x} \right \|_{2}=\sqrt{x_{1}^{2}+\cdots +x_{n}^{2}}   ,二范数,记为L_{2}

\left \| \overrightarrow{x} \right \|_{p}=(\sum_{1}^{n}|x_{i}|^{p})^{\frac{1}{p}},p范数,记为L_{p}

\left \| \overrightarrow{x} \right \|_{1}=\sum_{1}^{n}|x_{i}|,一范数,记为L_{1}

\lim_{p\rightarrow \infty }L_{p}=\underset{i}{max}|x_{i}|,无穷范数,记为L_{\infty }

|x_{i}|^{^{0}}=\left\{\begin{matrix} 0 &x_{i}=0 \\ 1& x_{i}\neq 0 \end{matrix}\right.\left \| \overrightarrow{x} \right \|_{0}=kx_{i}中有k个不为0的数),0范数,记为L_{0},一般用来判断矩阵的稀疏性,若矩阵中(向量)大部分数为0的话,那么这个矩阵(向量)就是稀疏的。

<\overrightarrow{x},\overrightarrow{y} > =\overrightarrow{x}\overrightarrow{y}=x^{T}y=\sum_{1}^{n}x_{i}y_{j}

cos(x,y)=\frac{\overrightarrow{x}\cdot \overrightarrow{y}}{\left \| \overrightarrow{x}\right \|_{2}\cdot \left \| \overrightarrow{y} \right \|_{2}},若cos(x,y)=1,则代表着\overrightarrow{x_{i}}=k\overrightarrow{y_{i}}

向量相乘:(1)Hardamard——A_{m\times n},B_{m\times n},则A\odot B=C_{m\times n},对应位置相乘。

(2)Kronecker——A_{a\times b},B_{c\times d},则A\odot B=C_{ac\times bd},在B的每个位置上的数都分别与A矩阵相乘

举例 Kronecker:

                    \begin{pmatrix} a_{11} & a_{12}\\ a_{21}&a_{22} \end{pmatrix}\begin{pmatrix} b_{11} &b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} a_{11}b_{11} & a_{12}b_{11} & a_{11}b_{12} &a_{12}b_{12} \\ a_{21}b_{11}&a_{22}b_{11} &a_{21}b_{12} &a_{22}b_{12} \\ a_{11}b_{21}&a_{12}b_{21} &a_{11}b_{22} &a_{12}b_{22} \\ a_{21}b_{21} &a_{22}b_{21} &a_{21}b_{22} & a_{22}b_{22} \end{pmatrix}

张量的运算

一阶张量——向量,其运算略

二阶张量——矩阵,其运算略

高阶张量——\overrightarrow{a}\epsilon \mathbb{R}^{k},\overrightarrow{b}\epsilon \mathbb{R}^{n},\overrightarrow{c}\epsilon \mathbb{R}^{m},则\overrightarrow{a}\cdot \overrightarrow{b}\cdot \overrightarrow{c}\epsilon \mathbb{R}_{k\times n \times m}

矩阵的逆和伪逆

矩阵的逆——若A^{-1}A=AA^{-1}=I,则A^{-1}为A的逆。

伪逆——More Penrose_inverse需要满足四个条件:(1)A^{-1}AA^{-1}=A^{-1}(2)AA^{-1}A=A(3)(AA^{-1})^{T}=AA^{-1}(4)(A^{-1}A)^{T}=A^{-1}A

行列式

行列式的三条性质:
(1)线性性:行列式为f(\alpha_{1} ,\alpha_{2} ,\cdots ,\alpha_{n} )\rightarrow \mathbb{R}^{n},\alpha_{1} =k_{1}\beta _{11}+k_{2}\beta _{12}k_{1}\beta _{11}+k_{2}\beta _{12}=k_{1}f(\beta_{11} ,\alpha_{2} ,\cdots ,\alpha_{n} )+k_{2}f(\beta_{12} ,\alpha_{2} ,\cdots ,\alpha_{n} )

(2)反对称性:若\alpha _{i}=\alpha _{j},i\neq j,则f(\alpha_{1} ,\alpha_{2} ,\cdots ,\alpha_{n} )=0

(3)f(e_{1},e_{2},\cdots ,e_{n})=1

线性方程组

A_{n\times n}b_{n\times 1}=C_{n\times 1}替换为AX=C

x_{i}f(\alpha_{1} ,\alpha_{2} ,\cdots ,\alpha _{n})=f(\alpha_{1} ,\alpha_{2} ,\cdots ,x_{i}\alpha _{i},\cdots ,\alpha _{n})=x_{i}f(\alpha_{1} ,\alpha_{2} ,\cdots ,\alpha _{1},\cdots ,\alpha _{n})+x_{i}f(\alpha_{1} ,\alpha_{2} ,\cdots ,\alpha _{i},\cdots ,\alpha _{n})=f(\alpha_{1} ,\alpha_{2} ,\cdots ,x_{1}\alpha _{1}+x_{i}\alpha _{i},\cdots ,\alpha _{n})=\cdots =f(\alpha_{1} ,\alpha_{2} ,\cdots ,\sum_{1}^{n}x_{i}\alpha _{i},\cdots ,\alpha _{n})=f(\alpha_{1} ,\alpha_{2} ,\cdots ,C,\cdots ,\alpha _{n})

所以x_{i}=\frac{f(\alpha _{1},\cdots, C,\cdots \alpha _{n})}{f(\alpha_{1} ,\cdots ,\alpha_{i} ,\cdots \alpha _{n})}

二次型和正定性

二次型:

f(x_{1},x_{2},\cdots ,x_{n})=\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+\cdots +\alpha_{n} x_{n}^{2}+\beta _{11}x_{1}x_{2}+\beta _{13}x_{1}x_{3}+\cdots +\beta _{n-1,n}x_{n-1}x_{n}=k_{1}y_{1}^{2}+k_{2}y_{2}^{2}+\cdots +k_{n}y_{n}^{2}

正定性:
X^{T}AX=y^{T}y=\sum y_{i}^{2}\geq 0,其中A=V^{T}V,y=VX

惯性定理:

A=V^{T}BVAB合同

对于不同的V来说,B的对角线上的正数和负数都是固定的,其正数的个数为正惯性,其负数的个数为负惯性。

矩阵分解

(1)Cholesby分解——对于矩阵A,若A是正定的且对称的,那么一定存在下三角矩阵L,使得A=LL^{T}。可根据A来确定L

目的:A_{m\times n}=L_{m\times k}U_{k\times n},其中L为下三角矩阵,U为上三角矩阵,那么求解A的逆的时候,可以利用A^{-1}=(LU)^{-1}=U^{-1}L^{-1},只需要求解U,L的逆即可(更加方便)。

(2)特征值分解——A=VDV^{-1},其中V为一组正交基(v_{i}v_{j}=0,v_{i}v_{i}=1),即VV^{T}=I,则A=VDV^{T}=\sum_{1}^{n}d_{i}v_{i}v_{i}^{T}\approx D_{1}v_{i}v_{i}^{T}+D_{2}v_{j}v_{j}^{T}(应用于主成分分析、矩阵压缩感知,可将一阶张量变为二阶张量)

(3)奇异值分解——A_{m\times n}=U_{m\times m}D_{m\times n}V^{T}_{n\times n}=\sum_{1}^{n}d_{i}u_{i}v_{i}^{T},其中U,V为正交阵,D为对角阵。(应用于矩阵压缩、矩阵逼近)。AA^{T}=UDV^{T}(UDV^{T})^{T}=UDV^{T}VD^{T}U^{T}=UD^{2}U^{T},将奇异值分解转化为特征值分解,便可得到UDAA^{T}特征值可求UD(为AA^{T}特征值的开方))和V

(4)QR分解——A=QR,其中Q为正交阵,R为上三角矩阵。

A_{0}=Q_{0}R_{0}

Q_{1}R_{1}=A_{1}=R_{0}Q_{0}

Q_{2}R_{2}=A_{2}=R_{1}Q_{1}

以此类推,可得到A_{n}对角线的值和特征值非常接近。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值