希尔排序
希尔排序是插入排序的一种,也称缩小增量排序。
希尔排序时间复杂度
最优时间复杂度:根据步长序列的步长的不同而不同
最坏时间复杂度:O(n²)
稳定性:不稳定
希尔排序算法的实现
#coding = utf-8
def shell_sort(alist):
'''希尔排序'''
#n=9
n=len(alist)
#gap=4
gap = n//2
#gap变化到0之前,插入算法执行的次数
while gap>=1:
#插入算法,与普通的插入算法的区别就是步长gap
for j in range(gap,n):
#j=[gap,gap+1,gap+2,gap+4,……,n-1]
i=j
while i>0:
if alist[i]<alist[i-gap]:
alist[i],alist[i-gap]=alist[i-gap],alist[i]
i-=gap
else:
break
#缩短gap步长
gap //=2
if __name__=='__main__':
li=[54,26,93,17,77,31,44,55,20]
print(li)
shell_sort(li)
print(li)
快速排序(难点但必须掌握)
快速排序时间复杂度
最优时间复杂度:O(nlogn)——竖向logn (222*……*2=n 2^次数=n 次数=log2(n)=logn) 横向n
最差时间复杂度:O(n)
稳定:不稳定
快速排序算法的实现
#coding = utf - 8
def quick_sort(alist,first,last):
'''快速排序'''
if first >= last: #只有first<last才会执行,递归停止的条件
return
mid_value=alist[first]
low=first
high=last
while low < high:
#high左移
while low<high and alist[high]>= mid_value:
high-=1
alist[low]=alist[high]
#low右移
while low<high and alist[low]<mid_value:
low+=1
alist[high]=alist[low]
#从循环退出时,low==high
alist[low]=mid_value
#递归
#在对mid_value中的左侧进行快速排序
quick_sort(alist,first,low-1)
# 在对mid_value中的左侧进行快速排序
quick_sort(alist,low+1,last)
if __name__=='__main__':
li=[54,26,93,17,77,31,44,55,20]
print(li)
quick_sort(li,0,len(li)-1)
print(li)
归并排序
归并排序的时间复杂度
最优时间复杂度:O(nlogn)
最坏时间复杂度:O(nlogn)(时间少,但是产生新的空间)
稳定性:稳定
归并排序算法的实现
#coding=utf-8
def merge_sort(alist):
'''归并排序'''
n=len(alist)
mid=n//2
if n <=1:
return alist
#left_li 代表的是采用归并排序后形成的有序的新的列表
left_li=merge_sort(alist[:mid])
#right_li 代表的是采用归并排序后形成的有序的新的列表
right_li=merge_sort(alist[mid:])
#以上是将子序列进行完全拆分
#将两个有序的子序列合并为一个新的整体
#merge(left_li,right_li)
left_pointer,right_pointer=0,0 #指的是左边、右边的指针
result=[]
while left_pointer<len(left_li) and right_pointer<len(right_li):
if left_li[left_pointer]<=right_li[right_pointer]:
result.append(left_li[left_pointer])
left_pointer+=1
else:
result.append(right_li[right_pointer])
right_pointer+=1
#循环退出后,总会落下一个元素,下面两行就是为了加上这个数。
result+=left_li[left_pointer:]
result+=right_li[right_pointer:]
return result
if __name__=='__main__':
li=[54,26,93,17,77,31,44,55,20]
print(li)
sorted_li=merge_sort(li) #有返回值
print(sorted_li)
归并排序算法——代码执行流程
#1 left_li=merge_sort [54,26,93,17]
#2 left_li=merge_sort [54,26]
#3 left_li = [54]
#4 right_li = [26]
#result=[26,54]
#5 right_li=merge_sort [93,17]
#6 right_li=[93]
#7 right_li=[17]
#8 result=[17,93]
#9 result=[17,26,54,93]
#10 right_li=merge_sort [77,31,44,55] 和以上的顺序一致
#…………………………………………………………………………………………………………………………………………………………………………………
#result=[31,44,55,77]
#result=[17, 26, 31, 44, 54, 55, 77, 93]
常见排序算法效率比较
二分法查找
二分查找的算法实现
二分查找又称折半查找。
优点:比较次数小,查找速度快,平均性能好。
缺点:要求待查的表为有序表,且插入删除困难。
#coding=utf-8
def binary_search(alist,item):
'''二分查找,递归版本'''
n=len(alist)
if n>0:
mid = n // 2
if alist[mid]==item:
return True
elif item<alist[mid]:
return binary_search(alist[:mid],item) #已经不包含mid
else:
return binary_search(alist[mid+1:],item) #已经不包含mid
return False #代表没有找到
def binary_search_2(alist,item):
'''二分查找,非递归算法'''
n=len(alist)
first=0
last=n-1
while first<=last:
mid=(first+last)//2
if alist[mid]==item:
return True
elif item<alist[mid]:
last=mid-1
else:
first=mid+1
return False
if __name__=='__main__':
li=[17, 26, 31, 44, 54, 55, 77, 93]
print(binary_search(li,55))
print(binary_search(li,60))
print(binary_search_2(li,55))
print(binary_search_2(li,60))
二分查找的时间复杂度
最优时间复杂度:O(1) #mid即为item
最坏时间复杂度:O(nlogn)