buns
CF106C
这是一道可以用背包来做(但是我不会),所以直接来了dp,这题我们读完可以很轻松的发现,做包子的顺序和我们所得到的收益无关,并且状态的思考其实也是显而易见,dp[x][y] 做前x种包子话y面包所得收益的最大值,至于另外一个馅料的维度我们完全可以用一个小循环去枚举,不用单放到状态里,那么动态转移方程是不是也就显而易见了,dp[x][y]=max(dp[x-1][y-k消耗]+收益k),k自然就是做这个包子的数量,至于对于馒头我们完全可以在枚举dp找答案时候加入就ok了,
最后代码如下
#include<cstdio>
#include<cstring>
#include<bits/stdc++.h>
using namespace std;
int n,m,c0,d0; //面料,种类,包子的用料和收益
int a[1000],b[10000],c[10000],d[10000];
get_input(){
scanf("%d%d%d%d",&n,&m,&c0,&d0);
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
}
}
int dp[14][1005];//第几包子花了多少面料的收益最大值
void get_dp(){
for(int x=1;x<=m;x++){
for(int y=0;y<=n;y++){
for(int k=0;k*b[x]<=a[x]&&k*c[x]<=y;k++){
dp[x][y]=max(dp[x-1][y-k*c[x]]+k*d[x],dp[x][y]);
}
}
}
int ans=0;
for(int i=0;i<=n;i++){
ans=max(dp[m][i]+(n-i)/c0*d0,ans);
}
printf("%d",ans);
}
int main(){
get_input();
get_dp();
return 0;
}