上面是这道题,显而易见它是中文的(省得翻译),同时这是一道非常简单动态规划问题。做出这道题我们只需要了解动态规划的基础思想就行了。
分析:树塔结构,对于我这个小白来说,第一眼就会从上至下扫一遍,而且开始“正向”分析。但是动态规划教我们的是一种对状态的反向分析方法。中间的具体数值不需要关注,只需要关注每一步的状态是否为我们想要的状态就行了。所以当我们正向做这道题没有思路的时候不如反向思考:从上至下,sum最大等价于从下至上sum最大。而从下至上时我们需要满足条件——到i行j列时,经过的路径上的数值相加值已经最大。
我们先看代码然后再分析它
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
int a[105][105],b[105][105];//这里int一个b[105][105]
//它其实是到i行j列,经过的路径上的数值相加值。
while(t--){
int line;
scanf("%d",&line);
for(int i=1;i<=line;i++){
for(int j=1;j<=i;j++)
scanf("%d",&a[i][j]);//到这里是输入注意看这道题的输入条件
}
for(int j=1;j<=line;j++){
b[line][j]=a[line][j];}//因为最后一行不能再加了所以就直接赋值就行了
for(int i=line-1;i>=1;i--){
for(int j=1;j<=i;j++){
b[i][j]=a[i][j]+max(b[i+1][j],b[i+1][j+1]); //这里很关键,它的意思是在第i行第j个时本数值加上之前
//这一条路上的最大sum。注:因为是二叉型分布所以要用个max。
}
}
printf("%d\n",b[1][1]);
}
return 0;
}