浅谈线段树
为什么要使用线段树?因为它太快了(有些题目)
假如有一个a[1],a[2]......a[n]的数组,有两种操作:
输入i x即让下标为i的数加x。
输入l r即对下标在[l, r]区间内的a数组求和。
在这里我们先分析,有人马上想到了前缀和(我),然后我们惊讶的发现如果使用前缀和,在操作1后,将要更新a[i]之后的所有前缀和,时间复杂度O(mn),你不TLE谁TLE?
然后我们这里就要用一种非常有意思的数据结构——线段树。
在这里,我们可以定义一个sum[node], 每一个节点都是一个sum[node],所以有几个节点node就有多大。(一般来说,数据给多大,我们取四倍的就行了)。
问题来了,这个sum[node] 存什么呢?这里首先要明白一个事情这里的每一个节点表示的是一个区间(这大概就是为什么我们叫它线段树),区间不断二分最终得到[l, r], l = r ,而sum[node],即为第node个节点代表区间[l, r]的a[l], a[l + 1]......a[r]的和。
有了这些知识储备后,我们进入应用讨论阶段。首先,如果要使a[i] 变化为 a[i] + x ,我们查找后改变a[i]的值需要多大的时间复杂度?明显要logn (惊讶,比前缀方法中改变a[i]需要的操作数更多),但是之后我们更新sum[node],只需要更改包括该a[i]的sum,那么从下网上更改,只要logn 的时间复杂度,也就是说如果用线段树实现操作1,操作2总的时间复杂度只要O((logn)^2)。这不牛爆了?
既然线段树如此强大,那么我们该如何实现它呢?
拿题目讲吧,先看一道题:
下面是在学长指导下写的核心代码:
一串超长代码,对不起,实在不会优雅的粘贴代码,这次还请将就下。
接下来我们逐句分析这串代码:
首先我们需明确,我们用struct建树!
宏定义lson 和 rson 他们分别是什么呢?sum[]数组的大小又为什么是四倍的N呢?画个
二叉树的图看看!
显然能够归纳出node和lson, rson的关系(补充一下,lson我们把他看作node的左子树,rson为右子树)。
这里,sum[lson] 是lson这个节点所代表的i属于[l1, r1]的a[i]的和,同理可得sum[rson] 是rson这个节点所代表的i属于[l2, r2]的a[i]的和。最终sum[node]是node这个节点所代表的i属于[l1, r2]的a[i]的和(注意,这里的两个区间一合并就是连续的哦,自己好好想想哦,很简单的)。
这里的build函数意思是建立一个从序号为node开始,区间为[l, r]的树,写完这个函数后我们在面只需要写
node从1开始,区间从[1,n],开始建树。使用递归,区间不断二分,只有当l = r时,即节点已经拓展到最底层时返回sum[node] = a[l],因为最底层的每一个节点对应的区间只有一个数a[l]。同时每次调用函数的时候都调用一个pushup函数,求得sum[node]区间和。
建树完成后我们可以对树进行单点修改和区间查询的操作。
单点修改:
这里change中的node代表的是子树序点,l和r代表的是该点所代表的区间为[l, r],idx代表的是要修改的点的下标,x时要加的值。这里也写了一个递归,因为我们要找点修改所以只需要通过递归找到最底层的点即可。同理,函数出口为l = r,此时sum[node] + x 相当于a[idx] + x 。在l != r是二分区间,如果 idx <= mid 即 去找左子树change,否则找右子树change。同时在每次的递归调用时用pushup修改sum。
区间查询:
这里的函数变量定义是相同的node代表的是子树序点,l和r代表的是该点所代表的区间为[l, r]。L,R代表的是要查询的区间。函数出口是(l == L and r ==R),此时返回sum[node]。因为此时查询的区间就是子树序点为node代表的区间,该区间和为sum[node]。嗷,还有一个出口,因为可能存在区间[L, R]它无法正好在[l, r]内部而是分为两个区间计算。返回所得的结果ans。
来逐步分析一下查询操作。(l == L and r ==R)时返回sum[node]显然成立。否则二分区间,if(R <= mid)那么就说明[L, R]这一整个区间都在[l, mid]内,即去查询左子树即可,同理if(l > mid)去查询右子树即可。如果这两个都不满足就说明[L, R]有一部分在[l, mid]内有一部分在[mid + 1, r]内,ans分别加上两边查询结果即可,最后返回ans。
最后主函数那一部分就不多说了,应该都能看懂。
几乎不写博客的小白,知道写得难以理解,里面肯定有表述错误。如有问题还请提出,定会改正!