Java常用排序算法/程序员必须掌握的8大排序算法

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/a125138/article/details/7752973

本文由网络资料整理而来,如有问题,欢迎指正!

 

参考链接:维基百科-排序算法

// 排序原始数据
private static final int[] NUMBERS =
{49, 38, 65, 97, 76, 13, 27, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51};

 

插入排序 是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到{\displaystyle O(1)}的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

 public static void insertSort(int[] array) {
     for (int i = 1; i < array.length; i++) {
         int temp = array[i];
         int j = i - 1;
         for (; j >= 0 && array[j] > temp; j--) {
             //将大于temp的值整体后移一个单位
             array[j + 1] = array[j];
         }
         array[j + 1] = temp;
     }
     System.out.println(Arrays.toString(array) + " insertSort");
 }

 

希尔排序  也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位
public static void shellSort(int[] array) {
    int i;
    int j;
    int temp;
    int gap = 1;
    int len = array.length;
    while (gap < len / 3) { gap = gap * 3 + 1; }
    for (; gap > 0; gap /= 3) {
        for (i = gap; i < len; i++) {
            temp = array[i];
            for (j = i - gap; j >= 0 && array[j] > temp; j -= gap) {
                array[j + gap] = array[j];
            }
            array[j + gap] = temp;
        }
    }
    System.out.println(Arrays.toString(array) + " shellSort");
}

 

选择排序  是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多{\displaystyle n-1}次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

public static void selectSort(int[] array) {
    int position = 0;
    for (int i = 0; i < array.length; i++) {
        int j = i + 1;
        position = i;
        int temp = array[i];
        for (; j < array.length; j++) {
            if (array[j] < temp) {
                temp = array[j];
                position = j;
            }
        }
        array[position] = array[i];
        array[i] = temp;
    }
    System.out.println(Arrays.toString(array) + " selectSort");
}

 

堆排序  是指利用这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。

public static void heapSort(int[] array) {
    /*
     *  第一步:将数组堆化
     *  beginIndex = 第一个非叶子节点。
     *  从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。
     *  叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。
     */
    int len = array.length - 1;
    int beginIndex = (len - 1) >> 1;
    for (int i = beginIndex; i >= 0; i--) {
        maxHeapify(i, len, array);
    }
    /*
     * 第二步:对堆化数据排序
     * 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。
     * 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。
     * 直至未排序的堆长度为 0。
     */
    for (int i = len; i > 0; i--) {
        swap(0, i, array);
        maxHeapify(0, i - 1, array);
    }
    System.out.println(Arrays.toString(array) + " heapSort");
}
private static void swap(int i, int j, int[] arr) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
/**
 * 调整索引为 index 处的数据,使其符合堆的特性。
 *
 * @param index 需要堆化处理的数据的索引
 * @param len   未排序的堆(数组)的长度
 */
private static void maxHeapify(int index, int len, int[] arr) {
    int li = (index << 1) + 1; // 左子节点索引
    int ri = li + 1;           // 右子节点索引
    int cMax = li;             // 子节点值最大索引,默认左子节点。
    if (li > len) {
        return;       // 左子节点索引超出计算范围,直接返回。
    }
    if (ri <= len && arr[ri] > arr[li]) // 先判断左右子节点,哪个较大。
    { cMax = ri; }
    if (arr[cMax] > arr[index]) {
        swap(cMax, index, arr);      // 如果父节点被子节点调换,
        maxHeapify(cMax, len, arr);  // 则需要继续判断换下后的父节点是否符合堆的特性。
    }
}

 

冒泡排序  是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

public static void bubbleSort(int[] array) {
    int temp = 0;
    for (int i = 0; i < array.length - 1; i++) {
        for (int j = 0; j < array.length - 1 - i; j++) {
            if (array[j] > array[j + 1]) {
                temp = array[j];
                array[j] = array[j + 1];
                array[j + 1] = temp;
            }
        }
    }
    System.out.println(Arrays.toString(array) + " bubbleSort");
}

 

快速排序  又称划分交换排序,简称快排,一种排序算法,最早由东尼·霍尔提出。在平均状况下,排序n个项目要{\displaystyle \ O(n\log n)}大O符号)次比较。在最坏状况下则需要{\displaystyle O(n^{2})}次比较,但这种状况并不常见。事实上,快速排序{\displaystyle \Theta (n\log n)}通常明显比其他算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地达成。

public static void quickSort(int[] array) {
    _quickSort(array, 0, array.length - 1);
    System.out.println(Arrays.toString(array) + " quickSort");
}


private static int getMiddle(int[] list, int low, int high) {
    int tmp = list[low];    //数组的第一个作为中轴
    while (low < high) {
        while (low < high && list[high] >= tmp) {
            high--;
        }


        list[low] = list[high];   //比中轴小的记录移到低端
        while (low < high && list[low] <= tmp) {
            low++;
        }


        list[high] = list[low];   //比中轴大的记录移到高端
    }
    list[low] = tmp;              //中轴记录到尾
    return low;                  //返回中轴的位置
}


private static void _quickSort(int[] list, int low, int high) {
    if (low < high) {
        int middle = getMiddle(list, low, high);  //将list数组进行一分为二
        _quickSort(list, low, middle - 1);      //对低字表进行递归排序
        _quickSort(list, middle + 1, high);      //对高字表进行递归排序
    }
}

 

归并排序  是创建在归并操作上的一种有效的排序算法效率{\displaystyle O(n\log n)}大O符号)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

public static void mergingSort(int[] array) {
    sort(array, 0, array.length - 1);
    System.out.println(Arrays.toString(array) + " mergingSort");
}

private static void sort(int[] data, int left, int right) {
    if (left < right) {
        //找出中间索引
        int center = (left + right) / 2;
        //对左边数组进行递归
        sort(data, left, center);
        //对右边数组进行递归
        sort(data, center + 1, right);
        //合并
        merge(data, left, center, right);
    }
}

private static void merge(int[] data, int left, int center, int right) {
    int[] tmpArr = new int[data.length];
    int mid = center + 1;
    //third记录中间数组的索引
    int third = left;
    int tmp = left;
    while (left <= center && mid <= right) {
        //从两个数组中取出最小的放入中间数组
        if (data[left] <= data[mid]) {
            tmpArr[third++] = data[left++];
        } else {
            tmpArr[third++] = data[mid++];
        }
    }

    //剩余部分依次放入中间数组
    while (mid <= right) {
        tmpArr[third++] = data[mid++];
    }

    while (left <= center) {
        tmpArr[third++] = data[left++];
    }

    //将中间数组中的内容复制回原数组
    while (tmp <= right) {
        data[tmp] = tmpArr[tmp++];
    }
}

 

基数排序  是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

public static void radixSort(int[] array) {
    //首先确定排序的趟数;
    int max = array[0];
    for (int i = 1; i < array.length; i++) {
        if (array[i] > max) {
            max = array[i];
        }
    }
    int time = 0;
    //判断位数;
    while (max > 0) {
        max /= 10;
        time++;
    }


    //建立10个队列;
    ArrayList<ArrayList<Integer>> queue = new ArrayList<>();
    for (int i = 0; i < 10; i++) {
        ArrayList<Integer> queue1 = new ArrayList<>();
        queue.add(queue1);
    }


    //进行time次分配和收集;
    for (int i = 0; i < time; i++) {
        //分配数组元素;
        for (int anArray : array) {
            //得到数字的第time+1位数;
            int x = anArray % (int)Math.pow(10, i + 1) / (int)Math.pow(10, i);
            ArrayList<Integer> queue2 = queue.get(x);
            queue2.add(anArray);
            queue.set(x, queue2);
        }
        int count = 0;//元素计数器;
        //收集队列元素;
        for (int k = 0; k < 10; k++) {
            while (queue.get(k).size() > 0) {
                ArrayList<Integer> queue3 = queue.get(k);
                array[count] = queue3.get(0);
                queue3.remove(0);
                count++;
            }
        }
    }
    System.out.println(Arrays.toString(array) + " radixSort");
}

 

结果

 

 

展开阅读全文

没有更多推荐了,返回首页