ggplot2读书笔记6:第四章 语法 基础理论

13 篇文章 8 订阅

碎碎念ing:终于结束了《ggplot2》的第一部分“Getting Started”,今天开始看第二部分——语法,第四章(Mastering the Grammar)介绍了ggplot2的一些基础语法知识,大概是对前期内容在理论上做一个总结。

建立一个散点图

首先还以“耗油量”数据集(mpg)为例。

library(ggplot2)
mpg
# A tibble: 234 x 11
   manufacturer model      displ  year   cyl trans      drv     cty   hwy fl    class
   <chr>        <chr>      <dbl> <int> <int> <chr>      <chr> <int> <int> <chr> <chr>
 1 audi         a4          1.80  1999     4 auto(l5)   f        18    29 p     comp…
 2 audi         a4          1.80  1999     4 manual(m5) f        21    29 p     comp…
 3 audi         a4          2.00  2008     4 manual(m6) f        20    31 p     comp…
 4 audi         a4          2.00  2008     4 auto(av)   f        21    30 p     comp…
 5 audi         a4          2.80  1999     6 auto(l5)   f        16    26 p     comp…
 6 audi         a4          2.80  1999     6 manual(m5) f        18    26 p     comp…
 7 audi         a4          3.10  2008     6 auto(av)   f        18    27 p     comp…
 8 audi         a4 quattro  1.80  1999     4 manual(m5) 4        18    26 p     comp…
 9 audi         a4 quattro  1.80  1999     4 auto(l5)   4        16    25 p     comp…
10 audi         a4 quattro  2.00  2008     4 manual(m6) 4        20    28 p     comp…
# ... with 224 more rows

我们想建立一个展示发动机排量(displ)和高速公路行驶记录每加仑行驶的英里数(hwy)关系的散点图,并用不同颜色标记汽缸变量(cyl)。代码如下:

ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +
  geom_point()

image

You can create plots like this easily, but what is going on underneath the
surface? How does ggplot2 draw this plot?

1. 数据的美学映射(Mapping Aesthetics to Data)

散点图到底是啥?你以前见过很多,有可能也用手绘制过。散点图将每个观测值表示为一个点,根据两个变量的值进行定位。除了水平和垂直位置,每个点还具有大小,颜色和形状。这些属性被称为美学(aesthetics),是能在图形上感知的属性。每个美学可以映射到一个变量,或设置为一个常量值。在上图中,displ 映射到横轴上,hwy映射到纵轴上,cyl设置为彩色分类。大小和形状没有映射到变量,但保持其(恒定)默认值。

映射设定好之后,我们可以通过改变函数,画出除了散点图之外的折线图geom_line()、柱形图geom_bar()等:

## 折线图
ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +
geom_line() +
theme(legend.position = "none")

## 柱形图
ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +
geom_bar(stat = "identity", position = "identity", fill = NA) +
theme(legend.position = "none")

image

这些图虽然语法上是对的,但毫无意义。

点、线和条形都是不同的几何图形,他们组合起来可以有很多种plot:

Named plotGeomOthers
ScatterplotPoint
BubblechartPointSize mapped to a variable
BarchartBar
Box-and-whisker plotBoxplot
Line chartLine

有些图是根据实际需要添加的几何图形,他们没有确定的名称,如下:

ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +
  geom_point() +
  geom_smooth(method = "lm")

image

2. 标度(Scaling)

实际上,数据集中的数值对计算机没有任何意义。我们需要将它们从数据单位(例如,升,英里每加仑,气缸数量等)转换成计算机可以显示的图形单位(例如,坐标和颜色)。这种转换过程称为Scaling(scales)。

要生成一个完整的图表,需要三个主要元素:

  • data:数据
  • geom:代表数据的几何图形
  • scales and coordinate system:坐标系和标度

复杂化(Adding Complexity)

在普通的散点图中加线条和分面:

ggplot(mpg, aes(displ, hwy)) +
  geom_point() +
  geom_smooth() +
  facet_wrap(~year)

以上代码中增加了三个部分

  1. 分面(facets)
  2. 多个图层(multiple layers)
  3. 统计变换(statistics)

image

平滑图层geom_smooth()与点图层geom_point()不同,因为它不显示原始数据,而是显示数据的统计转换。所以,这个过程的形成是在将数据映射到美学之后,传递到统计转换(stat)加以处理。

图层语法的组成(Components of the Layered Grammar)

图表包括了数据、映射、统计变换、几何图形以及位置调整(position adjustment)。

图层 layers

图层由以下五个方面组成(具体见第五章):

  1. Data
  2. Aesthetic mappings.
  3. A statistical transformation (stat).
  4. A geometric object (geom).
  5. A position adjustment.
标度 Scales

标度控制的是从数据到图形属性的映射。下面是几种标度的例子:

image

(从左到右依次是连续型变量、离散型变量的形状和颜色标度)

(具体见第六章)

坐标系 Coordinate System

坐标系(简称coord)是指数据映射所在的图表平面,位置通常由两个坐标(x, y)决定。

坐标系的不同类型如下图:

image

(从左到右依次是笛卡尔坐标系、半对数坐标系、极坐标系)

分面 Facetting

(详见第七章)

= = = = = = = = 我是懵懵的分割线 = = = = = = = =

碎碎念plus:这一章看下来感觉干货不多,貌似更像是本书中间的一个过渡章节(也可能是我没有get到,不是很懂作者的用意)。囧。最后还是要放上参考资料,镇楼。


参考资料:

  1. Hadley Wickham(2016). ggplot2. Springer International Publishing. doi: 10.1007/978-3-319-24277-4
  2. 《R语言应用系列丛书·ggplot2:数据分析与图形艺术》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值