图形属性映射(Aesthetic Mappings)
用红笔圈出来的点似乎位于线性趋势之外,这些点代表的汽车具有比预期更高的燃油效率。如何解释这种现象呢?
我们可以假设这些汽车是混合动力车(hybrids) . 检验这种假设的一个方法是查看每辆汽车的 class. 根据 class 分类作箱线图(变量 class 映射为箱线图的填充颜色)
> ggplot(mpg,aes(x=class,y=hwy,fill=class))+geom_boxplot()
mpg 数据集中的 class 变量对汽车进行了分类,比如小型(compact), 中型(midsize) 和 SUV. 如果那些离群点是混合动力车,那么推测它们的分类是小型车,也可能是微型车(注意,这份数据是在混合动力车和 SUV 流行前收集的)。
可以向二维散点图中添加第三个变量, 比如 class, 方式是将它映射为一个图形属性(aesthetic). 图形属性(aesthetic) 是图中对象的可视化属性,其中包括数据点的大小、形状和颜色。通过改变图形属性(aesthetic)的值,可以用不同的方式来显示数据点。通