【cs231n】Detection and Segmentation

文章目录1 语义分割1.1 Sliding Window1.2 FCN(Fully Convolutional)去池化转置卷积2 目标检测2.1 R-CNN2.2 Fast R-CNNFaster R-CNNYOLO/SSD 图像检测和分割是cv的两个重要任务,这节课对其进行总结。 1 语义分割 ...

2019-09-01 21:45:09

阅读数 13

评论数 0

【cs231n】RNN LSTM

文章目录RNN(Recurrent Neural Networks) RNN(Recurrent Neural Networks) 上图是RNN的计算图,输入为一定长度的时间序列X及隐藏层的初始态h0h_0h0​,每一时刻的隐藏层都是由上一时刻的隐藏层ht−1h_{t-1}ht−1​及当前的输入层...

2019-08-05 22:55:27

阅读数 10

评论数 0

【AndrewNg机器学习】异常检测(Anomaly detection)

文章目录异常检测(Anomaly detection)高斯分布异常检测算法开发和评价一个异常检测系统异常检测与监督学习之对比特征的选择多元高斯分布及其应用 异常检测(Anomaly detection) 假设我们有数据集{x(1),x(2),……,x(m)x^{(1)},x^{(2)},……,x^...

2019-06-05 22:32:11

阅读数 283

评论数 0

【AndrewNg机器学习】线性回归(Linear Regression)

文章目录1 单变量线性回归1.1 模型基本概念1.2 代价函数 1 单变量线性回归 1.1 模型基本概念 线性回归模型是监督学习的一种。之所以叫做回归,是因为我们的模型预测结果为一个准确的数值;与之相对应的是分类问题,即预测结果为0或1从而将数据集分为两类。 假设有一个房价预测的问题,如下图所示,...

2019-06-05 22:31:51

阅读数 43

评论数 0

【AndrewNg机器学习】逻辑回归(Logistic Regression)

文章目录1 模型描述1.1 分类问题1.2 假设函数1.3 判定边界2 代价函数与梯度下降2.1 代价函数2.2 梯度下降 1 模型描述 1.1 分类问题 在分类问题中,我们要预测的变量y是离散的值,即判断其结果是否属于某一个类。在二分类问题中,我们将因变量可能属于的两个类分别称为负向类(y=0)...

2019-06-05 22:31:39

阅读数 29

评论数 0

【AndrewNg机器学习】正则化(Regularization)

文章目录1 过拟合问题2 正则化3 正则化应用3.1 正则化线性回归 1 过拟合问题 如下图所示的回归问题,第一个模型是线性模型,欠拟合,不能很好地适应训练集;第三个模型就属于过拟合,太过于强调训练数据,而不能推广到新的数据,进行对新数据的预测。中间的模型最为合适。 同样的,在分类问题中也有这种...

2019-06-05 22:30:51

阅读数 66

评论数 0

【AndrewNg机器学习】推荐系统(Recommender Systems)

文章目录1 什么是推荐系统2 基于内容的推荐系统 1 什么是推荐系统 推荐系统可以依靠你过去浏览的信息或者评价的电影来推荐新的信息。因此这会给互联网内容企业带来很大一部分收入,对企业有实质性的影响。 另外,对于机器学习算法来说,数据特征有很大的影响,不同的特征会影响算法的准确性和性能。对于特征的获...

2019-06-05 22:30:35

阅读数 50

评论数 0

【AndrewNg机器学习】降维(Dimensionality Reduction)

1. 降维 如下图所示,有一个含m个样本量的数据组,每个样本包含两个特征,我们可以找到一条直线z,将所有的点投影到该条直线上,那么每个样本的两个特征x1x_1x1​和x2x_2x2​就被压缩成一个特征z1z_1z1​,数据集由{(x1(1),x2(1)),……(x1(m),x2(m))(x^{(1...

2019-06-05 22:30:13

阅读数 48

评论数 0

【AndrewNg机器学习】聚类(Clustering)

文章目录无监督学习 无监督学习 无监督学习:数据不带有任何标签,训练集只有x而没有对应的label 聚类:如下图中数据,可以看为两个分开的点集,用聚类算法可以找到圈出这两个点集的方法 ...

2019-06-05 22:30:00

阅读数 76

评论数 0

【AndrewNg机器学习】支持向量机(Support Vector Machine)

文章目录1 SVM1.1 代价函数1.2 大边界 1 SVM 1.1 代价函数 在推导svm的代价函数之前,先回顾以下逻辑回归中每一个训练样本的代价函数:−(ylog⁡hθ(x)+(1−y)log⁡(1−hθ(x)))- \left( y \log h _ { \theta } ( x ) + (...

2019-06-05 22:29:33

阅读数 62

评论数 0

【cs231n】Assignment2总结

Assignment2的两个要点: 全连接神经网络的系统构建、深度学习优化方法、正则化、归一化等等 内容 作业代码 全连接神经网络的构建 cs231n/classifiers/fc_net.py 相关层的前向与反向传播(affine\relu\bn\ln\dropout) ...

2019-05-06 14:03:47

阅读数 104

评论数 0

【cs231n】卷积神经网络及反向传播

文章目录卷积神经网络卷积层池化层反向传播卷积层反向传播 卷积神经网络 CNN一般由卷积层、池化层、全连接层三种类型的层构成。 卷积层 一些概念: 感受野:即每个神经元与输入数据的局部区域连接的空间大小,其大小为卷积核尺寸(F),深度永远与输入数据的深度相同。 步长:卷积核在输入数据上滑动时,每...

2019-05-05 22:29:57

阅读数 53

评论数 0

【cs231n】正则化

文章目录L2 regularizationL1 regularizationDropout 当训练数据过少、网络复杂或训练过多时,会出现过拟合。在训练集上的准确度不断提高,但在测试集上的准确率不高。为了解决这个问题,就需要在损失函数中加入正则化项,来降低网络的复杂度,提高其泛化能力。 L2 reg...

2019-04-25 13:51:34

阅读数 33

评论数 0

【cs231n】Batchnorm及其反向传播

文章目录BatchNormalization其他Normalization方法LayerNormalizationInstanceNormalizationGroupNormalization 神经网络中有很多层的叠加,数据经过每一层后,其分布会发生变化,给下一层的训练带来麻烦,这一现象称为Int...

2019-04-22 17:42:08

阅读数 182

评论数 0

【cs231n】深度学习优化方法

文章目录随机梯度下降minibatch-SGD学习率衰减动量(Momentum)更新Nesterov动量更新逐参数适应学习率方法AdagradRMSpropAdam 随机梯度下降 minibatch-SGD 最简单的更新形式,沿着梯度负方向改变参数,其中dx由小批量数据求得 x += - lear...

2019-04-16 15:36:44

阅读数 38

评论数 0

【cs231n】Assignment1总结

cs231n的第一部分主要为knn,svm,softmax以及two_layer_network,作为入门,主要难点在于损失函数构建及梯度求导。 算法 代码 重难点 KNN cs231n/classifiers/k_nearest_neighbor.py \qquad ...

2019-04-09 22:05:26

阅读数 66

评论数 0

【cs231n】两层神经网络的反向传播

文章目录矩阵求导方法两层神经网络的梯度求导 矩阵求导方法 维度相容原则:假设每个中间变量量的维度都不不⼀一样,看怎么摆能把雅克比矩阵的维度摆成矩阵乘法规则允许的形式。只要把矩阵维度倒腾顺了了,公式也就对了了。 设有f(Y):Rm×p→Rf ( Y ) : \mathbb { R } ^ { m ...

2019-04-02 15:37:25

阅读数 74

评论数 0

TensorFlow学习笔记(8) Tensorboard可视化

文章目录Tensorboard简介TensorFlow计算图可视化命名空间与Tensorboard图上节点节点信息监控指标可视化 Tensorboard简介 Tensorboard是Tensorflow的可视化工具,通过tf程序输出的日志文件来可视化程序的运行状态。下面的代码完成了Tensorbo...

2019-03-22 17:30:22

阅读数 75

评论数 0

TensorFlow学习笔记(7) 多线程输入数据处理框架

目录 多线程输入数据处理框架 队列与多线程 输入文件队列 组合训练数据 输入数据处理框架 多线程输入数据处理框架 为了避免图像预处理成为神经网络模型训练效率的瓶颈,TF提供了一套多线程处理输入数据的框架。经典的输入数据处理流程为如图所示。 队列与多线程 在tensorfl...

2019-03-18 14:26:31

阅读数 525

评论数 0

【cs231n】SVM与Softmax的梯度下降

文章目录SVM 在CS231n课程的线性分类中讲了SVM和Softmax两种分类方法,但是没有给出梯度的具体计算过程,本文着重记录一下两个算法的梯度计算。 SVM SVM的损失函数的计算过程如下: 首先计算Score:S=WXS = WXS=WX,其中S(N,C),W(N,D),X(D,C),矩...

2018-12-19 23:23:38

阅读数 296

评论数 0

提示
确定要删除当前文章?
取消 删除