yolov8/9/10/11模型在bdd100k数据集上的应用【代码+数据集+python环境+训练/应用GUI系统】
yolov8/9/10/11模型在bdd100k数据集上的应用【代码+数据集+python环境+训练/应用GUI系统】
yolov8/9/10/11模型在bdd100k数据集上的应用【代码+数据集+python环境+训练/应用GUI系统】
- bdd100k数据集介绍
BDD100K数据集是一个专为自动驾驶领域的研究和开发设计的大规模、多样化驾驶视频数据库。
BDD100K数据集由伯克利大学AI实验室(BAIR)在2018年5月发布。项目地址为:https://gitcode.com/gh_mirrors/bdd/bdd100k。视频数量:包含100,000段高清视频。视频长度与质量:每段视频大约40秒长,分辨率为720p,帧率为30fps。图片采样:从每个视频的第10秒处抽取关键帧,共得到100,000张静态图片,每张图片尺寸为1280x720像素。标注信息:这些图片被详细地标注了对象边界框(涵盖10个类别)、可驾驶区域、车道标记以及全帧实例分割。多样性:BDD100K数据集涵盖了不同的城市街道场景、时间(白天/夜晚)、天气状况等,确保了模型能够在多种环境下有效工作。帮助训练自动驾驶汽车的感知模块,使它们在复杂环境中做出准确判断。通过大量数据训练和验证新的检测、分割和分类算法。助力理解交通流、预测风险和优化路网设计。为相关领域的学术论文提供实验基础。
数据集划分
训练集:70,000张图片,用于训练模型。
验证集:10,000张图片,用来评估模型性能并调整参数。
测试集:20,000张图片,作为最终测试用例,以检验模型的实际效果。
BDD100K支持多种与自动驾驶相关的任务,包括但不限于:
物体检测:识别道路中的车辆、行人、交通信号灯等。
语义分割:区分图像中不同类型的地面元素,如路面、人行道等。
车道线检测:准确描绘道路上的车道线位置。
可行驶区域分割:确定哪些部分是可以安全行驶的区域。
场景理解:通过分析整体画面来理解当前驾驶环境的状态。
数据格式与标注
所有标签均采用JSON格式存储,包含丰富的属性描述,例如物体是否被遮挡、交通灯颜色状态等。
对于每个检测到的对象,还会提供其二维边界框坐标或更复杂的多边形轮廓点位信息,以便于进行精确的位置定位。
BDD100K数据集以其庞大的数据量、广泛的应用场景以及详细的标注信息,成为自动驾驶领域内不可或缺的重要资源之一。无论是学术界还是工业界的研究人员都能从中受益匪浅。
- YOLO11算法介绍
Ultralytics 的上一个官方版本是 2023年1月发布的 YOLOv8 系列,已经过去了1年多了。那么 YOLO11 作为最新官方版本都有哪些更新呢? 强化特征提取:YOLO11 采用了改进的后端和颈部架构,增强了特征提取能力,从而实现更精确的物体检测和更复杂的任务执行;优化效率与速度:YOLO11 引入了经过改进的架构设计和优化的训练流程,实现了更快的处理速度,并保持了准确性和性能之间的最佳平衡;更精准、更少参数:随着模型设计的进步,YOLO11m 在 COCO 数据集上的平均精确度(mAP)更高,同时使用了比 YOLOv8m 少 22% 的参数,在不牺牲精度的情况下提高了计算效率;跨环境适应性:YOLO11 可以在各种环境中无缝部署,包括边缘设备、云平台以及支持 NVIDIA GPU 的系统,确保最大限度的灵活性(这句话非常认可,因为在 AX650N 上直接用 YOLOv8 的 sample 就能运行);YOLO11 支持多种任务:无论是目标检测、实例分割、图像分类、姿态估计还是定向对象检测(OBB),YOLO11 的设计旨在满足各种计算机视觉挑战。(本文只介绍目标检测任务的部署
新增了 C2PSA 模块用于特征增强,其实就是一个小的 Self-Attention
YOLO11建立在今年早些时候YOLOv9和YOLOv10中引入的进步之上,结合了改进的架构设计、增强的特征提取技术和优化的训练方法。真正让YOLO11脱颖而出的是其令人印象深刻的速度、准确性和效率的结合,使其成为Ultralytics迄今为止创造的最强大的型号之一。通过改进的设计,YOLO11可以更好地提取特征,这是从图像中识别重要模式和细节的过程,即使在具有挑战性的场景中,也可以更准确地捕捉复杂的方面。值得注意的是,YOLO11m在COCO数据集上获得了更高的平均精度(mAP)分数,同时使用的参数比YOLOv8m少22%,使其在不牺牲性能的情况下计算更轻。这意味着它可以提供更准确的结果,同时运行效率更高。最重要的是,YOLO11带来了更快的处理速度,推理时间比YOLOv10快2%左右,非常适合实时应用。
它旨在处理复杂的任务,同时更容易使用资源,并旨在提高大规模模型的性能,使其成为要求苛刻的人工智能项目的绝佳选择。增强管道的增强也改善了训练过程,使YOLO11更容易适应不同的任务,无论您是在处理小型项目还是大型应用程序。事实上,YOLO11在处理能力方面非常高效,非常适合在云和边缘设备上部署,确保跨不同环境的灵活性。简而言之,YOLO11不仅仅是一次升级;这是一个明显更准确、更高效、更灵活的模型,能够更好地应对任何计算机视觉挑战。无论是自动驾驶、监控、医疗成像、智能零售还是工业用例,YOLO11的多功能性足以满足几乎任何计算机视觉应用。
- 数据集介绍
数据集主要类别为:
# Classes
names:
0: bicycle
1: bus
2: car
3: motorcycle
4: other person
5: other vehicle
6: pedestrian
7: rider
8: traffic light
9: traffic sign
10: trailer
11: train
12: truck
示例图片如下:
将数据集划分为训练集、测试集以及验证:
数据集选取部分数据,数据量在7万左右。
设置数据集在yolov11中的配置文件为:
- 代码示例与操作步骤
设置训练、测试、推理的参数,进行编写代码:
训练代码:
分别运行对应的代码可以进行训练、测试、单张图片推理。
设计对应的应用系统GUI界面如下:
设计可视化训练系统如下:
- 安装使用说明
确保代码所在的路径不能出现中文!!!!!!!
确保代码所在的路径不能出现中文!!!!!!!
确保代码所在的路径不能出现中文!!!!!!!
为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。
运行该脚本可以直接执行GUI代码,进入上述界面。不需要再次配置python的环境。
运行:run_train_GUI,bat
- 联系方式
我们非常乐意根据您的特定需求提供高质量的定制化开发服务。为了确保项目的顺利进行和最终交付的质量,我们将依据项目的复杂性和工作量来评估并收取相应的服务费用,欢迎私信联系我哈~~~