Elastic Search于2018年10月在美国纽约证券交易所上市了,其股票发行价为 36 美元,最高涨至 74.20 美元,最终收盘价为 70.00 美元,涨幅 94.44%,达到近翻倍的涨幅。从公司成立到上市仅用了 8 年,超过 3.5+ 亿的产品下载,100万+ 名开发人员及 5,500+ 个客户。
ElasticSearch是什么?
ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
TM-Elasticsearch
TM-Elasticsearch Service(ES)是基于开源的Elasticsearch的基础进行封装,植入探码科技在工业、制造业、金融业等行业模型算法构建的高可用、可伸缩的云端托管服务。ES既有国内优秀云计算服务商在计算、存储、安全等领域的技术优势和资源优势并且保持了Elasticsearch本身的兼容与开放能够为客户提供稳定、弹性可扩展的服务。TM-Elasticsearch丰富的集群管理功能,帮助客户免去软硬件部署调试工作聚焦业务本身。同时探码ES适用于海量数据存储搜索、实时日志分析等场景,如网站搜索导航、企业级搜索、服务日志异常监控、点击流分析等。
产品特点
超大容量的数据存储
TM-Elasticsearch提供了多种规格的节点类型和高性能SSD磁盘有效保障数据的读写性能;支持弹性扩展到上百个节点能达到PB级数据的存储,满足用户不同类型的业务场景;同时支持故障节点探测及替换,保障集群高可用性;具备全文检索功能。
超高开放性
TM-ES 覆盖了数据从收集到存储消费的完整生命周期。支持各种开源插件、RESTful API,方便用户选择合适的插件和客户端,在 TM-ES 集群上构建自己的应用。同时用户可以非常方便地使用各种数据同步插件将已有云产品的数据,同步到 TM-ES 集群中。
可靠的安全监控
TM-Elasticsearch中的权限功能会向正确的人员赋予正确的访问权限。IT、运营和应用团队能够依赖来管理善意用户并阻隔恶意行动者;与此同时,TM-ES中存储的数据始终享有可靠的安全保障,TM-ES中的审核日志功能能够让您轻松地维护所有系统和用户活动的完整记录,堪称安全世界的无声英雄。让公司高管和客户都能高枕无忧。
高效的数据查询与分析数据的可视化
TM-Elasticsearch拥有全文检索,结构化化搜索、数据过滤和指标统计等搜索功能,可以应用于信息搜索、和数据分析等多种场景。同时我们通过有限状态机实现了用于全文检索的倒排索引,使每个数据都被编入了索引。您可以用快到令人发指的速度使用和访问您的所有数据。使用内置的数据可视化插件,用户可以将统计的数据可视化清晰的呈现出来。
应用场景
应用搜索:作为应用开发者, 当此应用具有有社交属性时,那么总会有查询注册用户的需要。如果用户较多,使用传统数据库就无法满足查询性能了;此外如果还有内置论坛,那查询论坛内容是必不可少的功能,而使用 TM-Elasticsearch可以构建出来准确而快速的内部搜索系统。
企业日志管理:对于企业来说使用TM-Elasticsearch 进行集中式的运维日志管理可以为业务部门提供统一的搜索服务平台,整合内部资源简化搜素的流程。
数据指标分析可视化:TM-Elasticsearch为虚拟和增强现实中的分析和可视化提供动力。
安全分析:TM-Elasticsearch为客户企业应用执行实时安全异常检测以改善客户体验。
用户中心:作为 APP 开发者,可能会有几张表来存储元信息,例如使用的机型、操作系统等设备信息,以及登录数据、使用时长、触发过的事件等APP使用情况,还有用户的好友列表、联系人等用户信息。TM-Elasticsearch强大的索引能力,让快速的插入和读取这些数据变成可能,可以搭建快速而精准的推送系统。
商业智能(BI):在数据驱动运营的行业背景下,电子商务、移动应用、广告媒体等业务都需要借助数据分析和数据挖掘来辅助商业决策,而规模庞大的业务数据对数据的统计分析造成了很大的挑战。TM-ES 拥有结构化查询的能力,支持复杂的过滤和聚合统计功能,帮助客户对海量数据进行高效地个性化统计分析,发现问题与机会,辅助商业决策,真正地让数据产生价值。
合作用户
结语
TM-Elasticsearch基于开源的Elasticsearch的基础进行封装有良好的社区技术支持,并且有搭建方便、与 Hadoop 生态体系结合良好、便于测试、功能强大和监控方便等各种优势。总而言之,Elasticsearch 作为未来一种较为流行的技术架构的核心,是值得深入学习和研究。