数据创新平台介绍
——数联易康医疗大数据平台
数联易康医疗大数据平台,基于时下最先进的大数据平台技术Hadoop,打造了一套分布式大数据异构存储、实时与批量分析计算的平台,用以汇聚数据、清洗数据、分析数据、利用数据,给医疗卫生领域带来数据分析价值。目前数联易康已经就医疗大数据平台与四川省卫计委、重庆市卫计委以及全国多家医疗机构进行了深入合作,包括大数据医保监管、医疗机构精细化管理、DRG精细化管理、分级诊疗评估等创新应用,以期挖掘健康医疗大数据的更多潜在价值,共建医疗健康产业生态圈。
数据创新案例分享
1.案例的总体目标和思路
随着医改进程整体加速,我国逐步实现了全民医保,同时伴随着社会自办医院和大病保险的不断推广,社会保险的加入,如何有效控制医疗基金的滥用,骗用,真正做到基金的有效、合理、健康使用。这些是当前基金面临的一个非常严峻的问题,部分地区的医保基金已经穿底,而由商业保险公司承担的大病保险也是普遍处于亏损状态。传统的监管手段一直存在效率低,人工开销高,无法全面监控基金使用的问题,并且监管主要还停留在事后监管,也就是医疗费用已经产生之后的监控。这种传统的模式已经逐渐无法满足医疗服务监管的新要求,同时也无法满足医疗保险业务科学化,数据化的管理要求。
在此背景下数联易康提出了基于大数据的医疗监管解决方案。以“统一规范”、“安全稳定”、“技术领先”等为基本原则,满足医保局对审核、监管、实时监控、决策支持、风险预警等相关业务需求,同时遵循中华人民共和国人力资源和社会保障行业标准(LD/T90-2012)等文件要求,提供一套集智能审核、实时监管以及大数据挖掘、分析为一体的医保监管大数据解决方案。
2.案例实施方法或者综合解决方案
2.1技术方案架构设计
2.1.1总体架构图
数据支持层:是系统所有业务流转、数据分析的保证,包括业务数据库和数据仓库,所有非业务数据都是通过数据调度引擎调度管理。
业务支持层:主要由各种运行管理服务组件组成,它们共同支撑应用平台,为各业务系统提供基础服务,如基础框架、智能审核引擎、业务流程引擎、大数据算法等。
系统应用层:医保监管大数据解决方案包括六大系统:智能审核系统、实时监控系统、大数据挖掘系统、监管业务系统、决策支持系统、数据可视化系统。
2.1.2部署架构图
服务器物理主机是基于KVM搭建,提供高可用、可伸缩的私有云服务。数联易康监管决策系统所需的虚拟服务器都部署在私有云基础架构之上。
2.2方案介绍
数联易康医保监管大数据解决方案由智能审核、实时监控、大数据挖掘、监管业务、决策支持以及数据可视化六大系统组成。
2.2.1智能审核系统
参考医保政策、临床规范、用药指南等行业通用准则,自建22大类审核规则,共计600余万条细则。我们利用规则库可实现逐单、高效的费用明细数据审核,可有效识别出阶梯用药、重复收费、药品禁忌、超频次等违规行为。
在智能审核基础之上,我们结合医保审核业务,设计出一套科学、合理的线上办理流程,以规范业务办理流程,并提升业务办理效率。
业务办理后,我们从各维度对业务办理过程数据、结果数据进行分析,帮助管理者清晰掌握违规分布、业务办理效率相关情况,在解决解决医疗违规的同时,也可有效监督审核人员违纪行为。
2.2.2实时监控系统
根据医保部门所关注的关键指标,通过实时从经办系统、his系统获取数据,对各区县、医院进行实时监控,对可能存在异常的数据进行实时预警,使医保管理部门可对异常数据、行为尽早干预,确保基金始终处于健康、可控的范围之内。
此外,通过实时抓取his数据并利用大数据技术,对在院患者进行实时监控,在违规费用发生前进行预警,做到真正的事中监管,避免不合理费用产生。
2.2.3大数据挖掘系统
本系统的核心是拥有自主知识产权的大数据自适应学习引擎(MIBSLE),通过机器学习的手段进行海量数据挖掘。该引擎内置了上百种大数据反欺诈算法模型,从数据维度识别出可疑的就医行为,如药品滥用、项目滥用、过度医疗、超期住院等。
系统识别可疑数据后,由稽核人员对数据进行调查、核实,并将稽核结果反馈到系统中,算法模型在获取反馈结果之后进行自我学习,提高算法在后续异常识别中的精准度,以提升稽核效率。
算法除了可识别已知的异常行为之外,还可不间断对未知异常进行挖掘,挖掘出未知异常并由专业团队处理后,可集成到系统中不断完善我们的算法模型。
2.2.4监管业务系统
医保稽核是确保各项医疗保险政策准确执行,维护参保人员合法权益、保障医疗保险基金有效使用和安全的重要手段。
我们根据《基本医疗保险待遇稽核业务规范》国家标准,并结合各地实际稽核业务办理设计稽核业务线上办理流程。与传统业务相比,我们将大数据技术应用到监管业务流程中。在传统稽核业务当中,大部分稽核部门需要人工识别异常行为,受制于人本身的精力和经验,导致稽核效果差强人意。而我们系统中,利用大数据算法,从数据维度识别出可疑行为,稽核人员再对可疑数据进行精准稽核,提升稽核效率及效果。
2.2.5决策支持系统
决策支持系统以管理科学、运筹学、行为科学为基础,以计算机技术、仿真技术和信息技术为手段,针对医保决策问题,为管理者提供数据支持的智能人机系统。
该系统能够为决策者提供所需的数据、信息,帮助决策者明确决策目标和问题,并建立决策模型,并且对各种方案进行评价和优选,通过人机交互功能进行分析、比较和判断,为正确的决策提供必要的支持。通过与决策者的一系列人机对话过程,为决策者提供各种可靠方案,检验决策者的要求和设想,从而达到支持决策的目的。
本系统中所使用的相关参数值,极大可能从本方案相关模块自动获取,如机构考核、平均住院天数、均次费用等数据,以降低使用成本、提升用户体验。
2.2.6数据可视化系统
数据可视化系统借助于图形化手段,清晰有效地向用户传达、沟通信息。此系统中我们根据医保部门关注的医院、疾病、药品、基金等主题,提供27类主题分析报告。
在主题分析报告基础上,为了满足我们各业务场景下更加灵活的报表需求,平台还提供了自定义分析,该功能可根据实际需要,可通过简单的点击、拖拽等操作,实时生成所见即所得的各类报表。
3.案例实施取得的实际效果或可预见的成果
3.1提升审核效率,实现单据全量高效审核
通过高效的规则引擎实现结算单据全量、高效的审核,与过去人工抽样的审核方式对比可以极大的提升审核效率,缩短审核时间,规避由于人力不足而导致的漏审、误审。
3.2减少人为经办误差,统一审核标准
通过推进基于医疗规则的统一审核以及基于大数据的监管,推动审核监管的标准统一,规避由于经办人员的个体背景差异带来的人为经办误差。
3.3大数据助力监管,有效杜绝欺诈骗保
基于人工智能+大数据的反欺诈手段可以有效识别包括滥用药品、过度诊疗、联合骗保、伪造材料报销、串换药品等在内的欺诈骗保问题,杜绝欺诈骗保行为,长效控费。
3.4促进医疗服务行为规范,提升医疗机构精细化管理水平
将医保审核前置到医院端,有助于医保部门强化医疗保险医疗服务监管,将监管对象延伸到医务人员医疗服务行为,规范诊疗过程,从源头控制医疗费用的不合理增长,客观上促进医疗机构主动提升内部质量管理水平和绩效管理水平。
3.5提升医保精细化管理能力,用数据决策
通过制定详实的规则实现单条数据的逐条审核,保证每条处理有理有据,在政策制定时提供基金仿真机制,帮助医保部门评估政策制定的效果,做到数据决策、科学决策。再辅以诊疗方案分析、用药分析、单病种分析、疾病分组分析、总额控制等功能,综合提升医保部门的基金管理能力。
3.6促进内部流程建设,规避岗位廉政风险
通过智能审核、大数据监管的建设运用,优化了审核监管经办流程,实现业务办理全程的跟踪记录,做到业务办理过程问题精准定位,规避潜在的岗位廉政风险。
对于数据创新的新思考
有研究报告认为,从IT时代到DT时代,未来几年全球大数据市场将以每年30%的速度高速增长,而其中中国的数据占全球份额很高,到2020年将超过20%。麦肯锡也预测,在健康、医疗等7大领域的全球数据开放,将会撬动3万亿美元的经济价值。但目前,我国的健康医疗大数据由于质量不高、缺乏标准、多维度的特点,普遍缺乏有效利用。它像一座沉睡的宝藏,等待着探险者的挖掘。
如何将沉睡的医疗大数据转化为经济价值?数联易康瞄准的是医保控费市场。通过大数据反欺诈手段解决存在于医保报销环节的欺诈骗保、过度医疗等问题,建立一种科学的智能化的医疗保险监管体系,帮助医保部门更好地实现基金的科学管理和数据决策,实现新型支付方案改革的有效支撑,切实防范和化解基金管理风险,保障基金安全。基于大数据的医保监管大数据解决方案,是数联易康创新运用大数据、机器学习等手段,将数据服务产品化的结果。该产品以大数据平台为支撑,已积累百余种大数据反欺诈相关算法模型,超过40种欺诈场景,识别医保违规欺诈金额总占比3%-6%。产品对医保管理人员的专业性要求不高,使其可以在享受大数据服务的同时不为技术所累。经过多年的探索实践,该产品的实施已形成一套标准化的运作模式,可实现行业内的快速推广应用。
关于数联易康
成都数联易康科技有限公司(以下简称数联易康)是一家以人工智能、大数据为核心价值的新兴医保控费企业,专注于利用人工智能+大数据的高精手段为各地人力资源和社会保障局、卫生和计划生育委员会、医疗机构、商业保险公司提供智能审核、政策制定辅助决策、医疗行为监管等服务。
数联易康依托电子科技大学大数据研究中心,拥有十余年经验的数据挖掘、医疗行业、医疗保险、信息技术知名专家团队以及丰富的大数据实践经验;拥有来自于四川循证医学委员会以及商业医疗保险公司专家资源;团队具备深厚的医疗信息化背景及行业经验,拥有10余项大数据相关专利,50余篇高水平论文,超过600万条自建规则库,拥有自主知识产权的大数据自学习引擎(MIBSLE),超过10亿条医疗相关数据,并获得多项省部级科技课题大力支持。
经过多年数亿条业务数据淬炼,公司自主研发百余种针对医疗保险的大数据算法模型,涉及行为模式识别、医学文本解析、医疗图像处理、信任传播等,成功打造了基于大数据的医疗保险审核、监管、决策系列解决方案,受到国家、省、市各级领导的高度重视和肯定。截止目前,合作的人社局、卫计委、商业保险公司已达数十家、医疗机构达数千家,累计覆盖参保人群达8000万,数联易康以其先进的技术手段赢得了客户的高度认可。
目前,数联易康已通过高新技术企业认证、软件能力成熟度模型集成CMMI3认证、ISO9001质量体系认证,确保为客户提供规范标准、优质高效的全方位服务。
“中国数据创新琅琊榜”活动,面向各行业进行数据应用创新的企业,广征案例,择优推广。无论是数据初创企业,还是开展数字化转型的传统企业;无论是大数据行业,还是金融、教育、医疗等垂直行业,均可报名参加评选。
《大数据周刊》希望通过此次活动,让企业数据创新项目实现网状覆盖的最大化传播效果,用媒体声量推动大数据创新发展,并通过领袖意见及经典案例引发深思,进一步引爆数据正在喷薄而出的无穷力量!
如果你们是一家拥有独特创新能力的公司;
如果你们在数据与产品融合方面有成功案例;
如果你们有优秀的大数据解决方案;
如果你们有成熟的大数据展示平台;
如果你们的数据创新思维具有颠覆性标志;
如果你们开展了成功的数字化转型……
快快联系上面活动小助手吧!
大数据周刊
邮箱:tougao@bigdatamag.cn
电话:010-57524293
众论大数据 引领大时代
长按二维码关注