
DL/R
文章平均质量分 78
本专栏主要讲解与分享与深度学习领域、推荐领域相关的技术,包括各自案例实现,以及该领域的感悟和经验积累。
一个处女座的程序猿
2025年初博主2本新书(机器学习耗时5年/大模型耗时3年)即将开售!人工智能硕学历,拥有十多项发专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万
展开
-
Paper:RNN之《Generating Sequences With Recurrent Neural Networks用循环神经网络生成序列》的翻译和解读
利用长短期记忆递归神经网络,通过简单地预测一个数据点来实现长时间的复杂序列生成。该方法适用于文本(数据是离散的)和在线手写(数据是实值的)。然后,通过允许网络根据文本序列调整预测,将其扩展到手写合成。由此产生的系统能够生成多种风格的高度逼真的草书。递归神经网络(RNNs)是一类丰富的动态模型,被用于生成音乐[6,4]、文本[30]和动作捕捉数据[29]等领域的序列。通过一步一步地处理真实的数据序列并预测接下来会发生什么,可以训练RNNs来生成序列。假设预测是概率性的,原创 2020-03-15 14:08:31 · 9226 阅读 · 1 评论 -
ML之ggml:ggml框架(专注Transformer推理的机器学习库)的简介、安装和使用方法、案例应用之详细攻略
ML之ggml:ggml框架(专注Transformer推理的机器学习库)的简介、安装和使用方法、案例应用之详细攻略目录ggml的简介ggml的安装和使用方法ggml的案例应用ggml的简介2024年8月发布,ggml 是一个用 C 和 C++ 编写的机器学习库,专注于 Transformer 推理。它是一个开源项目,由一个不断壮大的社区积极开发。ggml 与 PyTorch 和 TensorFlow 等 ML 库类似,但仍处于开发初期,一些基本原理仍在快速变化。原创 2024-08-23 02:21:27 · 2591 阅读 · 0 评论 -
AI之Transformer:Transformer算法原理探索之基于 Transformer 模型层的中间层表示空间及其对计算效率的影响之实证研究
AI之Transformer:Transformer探索之基于 Transformer 模型层的中间层表示空间及其对计算效率的影响之实证研究目录相关文章基于 Transformer 模型层的中间层表示空间及其对计算效率的影响之实证研究相关文章《Transformer Layers as Painters》翻译与解读地址论文地址:https://arxiv.org/abs/2407.09298v1时间2024年7月12日作者Q原创 2024-07-24 23:37:13 · 1861 阅读 · 0 评论 -
AI之AI by Hand:AI by Hand(手动自定义AI算法的数学逻辑)的简介、使用方法、案例应用之详细攻略
AI之AI by Hand:AI by Hand(手动自定义AI算法的数学逻辑)的简介、使用方法、案例应用之详细攻略目录AI by Hand的简介AI by Hand的使用方法AI by Hand的案例应用AI by Hand的简介AI by Hand的背景起源于这样一个现象:目前每周发表的AI论文数量极其庞大,即便是计算机科学领域的教授也难以完全理解这些内容。这些论文通常包含大量的数学公式、图表、表格、引文以及长篇附录,使得信息的消化变得困难。为了解决这一问题,Tom原创 2024-07-28 12:22:45 · 3388 阅读 · 0 评论 -
ML之CF:基于MovieLens电影评分数据集利用基于用户协同过滤算法(基于cosine的NNeighbors)实现对用户进行Top5电影推荐案例—加载数据集→数据预处理(将原始ratings评分数
ML之CF:基于MovieLens电影评分数据集利用基于用户协同过滤算法(基于cosine的NearestNeighbors)实现对用户进行Top5电影推荐案例—加载数据集→数据预处理(将原始ratings评分数据转化为用户-物品评分矩阵)→划分数据集并创建矩阵→模型训练(采用无监督的NNeighbors算法实现用户-用户的协同过滤算法)→模型评估(回归评估【RMSE/MAE】+分类评估【P/R/F1/AUC/覆盖率coverage_TestONTrain】/MAP_by_All/MAP_by_TopK原创 2024-06-25 01:35:59 · 452 阅读 · 0 评论 -
DL之LF:损失函数简介——交叉熵损失和负对数似然损失的联系与区别、二分类(二元交叉熵+Sigmoid函数)、多分类(多元交叉熵+Softmax函数)
DL之LF:损失函数简介——交叉熵损失和负对数似然损失的联系与区别、二分类(二元交叉熵+Sigmoid函数)、多分类(多元交叉熵+Softmax函数)目录对比:交叉熵损失(分类问题的损失函数,常用于分类问题+DL)、负对数似然损失(衡量分布之间差异,常用于概率模型+LLM)对比:交叉熵损失(分类问题的损失函数,常用于分类问题+DL)、负对数似然损失(衡量分布之间差异,常用于概率模型+LLM)CELoss简介交叉熵损失(Cross-Entropy Loss,CELoss)是信息论中的一原创 2023-12-16 01:15:30 · 860 阅读 · 0 评论 -
DL之LSTM:基于正弦函数(输入)-余弦函数(目标输出)的数据集和TensorFlow框架利用LSTM算法预测时间序列数据(学习并拟合周期性模型)+动态实时真实值对比可视化
前缀调整通过在注意力机制的键和值部分添加可学习的权重,为模型提供了一种强大的微调手段,可以更好地捕捉任务特定的模式,并与提示调整等其他技术相辅相成,提供了一种灵活和强大的任务特定优化手段。原创 2024-05-03 00:27:01 · 893 阅读 · 0 评论 -
DL之GC:梯度检查点(Gradient Checkpointing,GC)的简介、实现代码、案例应用之详细攻略
DL之GC:梯度检查点(Gradient Checkpointing,GC)的简介、实现代码、案例应用之详细攻略目录相关论文梯度检查点(Gradient Checkpointing,GC)的简介梯度检查点的实现代码梯度检查点的案例应用相关论文《Training Deep Nets with Sublinear Memory Cost》翻译与解读地址论文地址:https://arxiv.org/abs/1604.06174时间2016年4月21日作者T原创 2020-01-12 09:55:02 · 898 阅读 · 1 评论 -
DL之Transformer:《The Annotated Transformer带注释的变压器》的翻译与解读—思路步骤及实现代码
DL之Transformer:《The Annotated Transformer带注释的变压器》的翻译与解读—包括代码目录《The Annotated Transformer》的翻译与解读导言背景第1部分:模型体系结构第2部分:模型训练第3部分:一个真实世界的例子结果结论《The Annotated Transformer》的翻译与解读地址GitHub地址:GitHub原创 2023-12-16 01:16:31 · 821 阅读 · 0 评论 -
XAI之TDB:transformer-debugger的简介、安装和使用方法、应用案例之详细攻略
XAI之TDB:transformer-debugger的简介、安装和使用方法、应用案例之详细攻略目录transformer-debugger的简介transformer-debugger的安装和使用方法transformer-debugger应用案例transformer-debugger的简介2024年3月12日,Transformer Debugger(TDB)是由OpenAI的Superalignment团队开发的工具,旨在支持对小型语言模型特原创 2024-03-13 22:44:53 · 2001 阅读 · 1 评论 -
AI之DL:人工智能领域—深度学习的发展历程之深度学习爆发的三大因素、探究DL为什么耗算力
针对梯度消失等问题,算法进行了优化。,比如深度神经网络的梯度消失问题,神经网络长期以来存在的问题是梯度消失,即在反向传播过程中,每一层都乘以激活函数的导数值,如果这个导数的绝对值小于1,经过多次乘法后梯度很快趋近于零,导致前面的层无法得到有效的更新。:如图是基于TensorFlow 的分布式学习的效果,横轴是GPU的个数,纵轴是与单个GPU相比时的加速倍数。>> 位数精度的缩减加速: 提到了降低位数精度的技术,即使用较低位数的浮点数来表示权重和激活值,从而减轻计算负担,实现深度学习的高速化。原创 2024-01-28 23:36:12 · 1621 阅读 · 1 评论 -
LLM之LangChain:LangChain 0.1.0 版本发布的简介、安装和使用方法、案例应用之详细攻略
LLM之LangChain:LangChain 0.1.0 版本发布的简介、安装和使用方法、案例应用之详细攻略目录相关文章LangChain 0.1.0 版本发布的简介LangChain 0.1.0 版本的安装和使用方法LangChain 0.1.0 版本的案例应用相关文章Py之Langchain:Langchain(LLM大型语言模型应用程序框架/将LLMs个体进行flow的能力)的简介、安装、使用方法之详细攻略https原创 2024-01-14 23:09:41 · 3111 阅读 · 0 评论 -
NLP之ELECTRA:ELECTRA的简介、安装和使用方法、案例应用之详细攻略
NLP之ELECTRA:ELECTRA的简介、安装和使用方法、案例应用之详细攻略目录相关论文ELECTRA的简介ELECTRA的安装和使用方法ELECTRA的案例应用相关论文《ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators》翻译与解读地址论文地址:https://arxiv.org/abs/2003.10555时间2020年3月23原创 2020-07-01 13:21:36 · 13112 阅读 · 2 评论 -
NLP之LLMs之T5:T5/FLAN-T5【Fine-tuned Language Net with T5】的简介(包括论文解读)、安装和使用方法、案例应用之详细攻略
NLP之LLMs之T5:T5/FLAN-T5【Fine-tuned Language Net with T5】的简介(包括论文解读)、安装和使用方法、案例应用之详细攻略目录T5的简介T5的安装和使用方法T5的案例应用相关论文3、Experiments实验4、Reflection反思T5的简介T5: 文本到文本的传输Transformer。截至2022年7月,我们建原创 2019-11-07 22:55:02 · 5389 阅读 · 1 评论 -
NLP之DeBERTa:DeBERTa的简介、安装和使用方法、案例应用之详细攻略
NLP之DeBERTa:DeBERTa的简介、安装和使用方法、案例应用之详细攻略目录相关论文DeBERTa的简介DeBERTa的安装和使用方法DeBERTa的案例应用相关论文《DeBERTa: Decoding-enhanced BERT with Disentangled Attention》翻译与解读地址论文地址:https://arxiv.org/abs/2006.03654时间2020年6月5日作者Peng原创 2020-07-06 08:43:15 · 6235 阅读 · 1 评论 -
NLP之ERNIE:ERNIE的简介、安装和使用方法、案例应用之详细攻略
NLP之ERNIE:ERNIE的简介、安装和使用方法、案例应用之详细攻略目录相关论文ERNIE的简介2、预训练模型介绍3、数据集下载4、模型效果评估ERNIE的安装和使用方法ERNIE的案例应用相关论文《ERNIE: Enhanced Representation through Knowledge Integration》翻译与解读地址论文地址:https://arxiv.org/abs/原创 2019-05-24 11:41:38 · 9038 阅读 · 1 评论 -
NLP之DistilBERT:DistilBERT的简介、安装和使用方法、案例应用之详细攻略
NLP之DistilBERT:DistilBERT的简介、安装和使用方法、案例应用之详细攻略目录相关论文DistilBERT的简介DistilBERT的安装和使用方法DistilBERT的案例应用相关论文《DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter》翻译与解读地址论文地址:https://arxiv.org/abs/1910.01108时间原创 2019-11-07 22:28:45 · 5506 阅读 · 1 评论 -
NLP之ALBERT:ALBERT的简介、安装和使用方法、案例应用之详细攻略
NLP之ALBERT:ALBERT的简介、安装和使用方法、案例应用之详细攻略目录相关论文ALBERT的简介ALBERT的安装和使用方法ALBERT的案例应用相关论文《ALBERT: A Lite BERT for Self-supervised Learning of Language Representations》翻译与解读地址论文地址:https://arxiv.org/abs/1909.11942时间2019年9月26日原创 2019-10-15 23:58:56 · 5018 阅读 · 1 评论 -
NLP之RoBERTa:RoBERTa的简介、安装和使用方法、案例应用之详细攻略
NLP之RoBERTa:RoBERTa的简介、安装和使用方法、案例应用之详细攻略目录相关论文RoBERTa的简介RoBERTa的安装和使用方法RoBERTa的案例应用相关论文《RoBERTa: A Robustly Optimized BERT Pretraining Approach》翻译与解读地址论文地址:https://arxiv.org/abs/1907.11692时间2019年7月26日作者Yinhan Liu, Myl原创 2019-08-29 18:35:18 · 9978 阅读 · 1 评论 -
NLP之BERT:BERT的简介、安装和使用方法、案例应用之详细攻略
NLP之BERT:BERT的简介、安装、使用方法之详细攻略目录相关文章BERT的简介BERT的安装BERT的使用方法相关文章Paper:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding用于语言理解的深度双向Transformers预训练模型》翻译与解读https://yunyaniu原创 2019-01-31 20:51:09 · 9032 阅读 · 1 评论 -
Paper:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding用于语言理解的深度双向Tr
Paper:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding用于语言理解的深度双向Transformers预训练模型》翻译与解读目录Paper:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》翻译与解读Abstract1、Introductio原创 2019-03-02 22:57:15 · 9894 阅读 · 1 评论 -
LLMs:Ghost Attention(GAtt)机制的简介(改进多轮对话+帮助注意力聚焦)、原理、作用之详细攻略
LLMs:Ghost Attention(GAtt)机制的简介(改进多轮对话+帮助注意力聚焦)、原理、作用之详细攻略目录来源Ghost Attention(GAtt)机制的简介、原理、作用来源LLMs之LLaMA-2:LLaMA-2的简介(技术细节)、安装、使用方法(开源-免费用于研究和商业用途)之详细攻略https://yunyaniu.blog.csdn.net/article/details/131819938Ghost Attention(GAtt)机制的简介、原理、作原创 2024-01-10 21:42:48 · 1734 阅读 · 1 评论 -
CV之DL之Cascade R-CNN:Cascade R-CNN的简介、安装、使用方法之详细攻略
CV之DL之Cascade R-CNN:Cascade R-CNN的简介、安装、使用方法之详细攻略目录相关论文Cascade R-CNN的简介Cascade R-CNN的安装Cascade R-CNN的使用方法相关论文《Cascade R-CNN: Delving into High Quality Object Detection》翻译与解读地址论文地址:https://arxiv.org/abs/1712.00726时间2017年1原创 2018-05-19 12:47:21 · 10030 阅读 · 2 评论 -
MLLM:《揭秘GPT-4:OpenAI架构背后的工程权衡—GPT-4 Architecture, Infrastructure, Training Dataset, Costs, Vision, M
MLLM:《揭秘GPT-4:OpenAI架构背后的工程权衡—GPT-4 Architecture, Infrastructure, Training Dataset, Costs, Vision, MoE》翻译与解读目录《GPT-4 Architecture, Infrastructure, Training Dataset, Costs, Vision, MoE》翻译与解读开始探讨:GPT-4的模型架构、训练基础设施、推理基础设施、参数数量、训练数据集组成、令牌数量、层数量原创 2023-07-20 00:00:44 · 898 阅读 · 0 评论 -
CV之DL之Yolo:计算机视觉领域算法总结—Yolo系列(YoloV1~YoloV8各种对比)的简介、安装、案例应用之详细攻略
CV之DL之Yolo:计算机视觉领域算法总结—Yolo系列(YoloV1~YoloV8各种对比)的简介、安装、案例应用之详细攻略目录相关文章Yolo系列(YoloV1~YoloV8各种对比)的简介、安装、案例应用Yolo系列的安装Yolo系列的案例应用相关文章CV之Yolox系列:YOLO-v1到YOLO-v8系列算法讲解:YOLO的兴起及其在数字制造和工业缺陷检测领域的互补性https://yunyaniu.blog.csdn.net/原创 2024-01-07 20:21:05 · 3783 阅读 · 3 评论 -
CV之DL之YOLOv6:YOLOv6的简介、安装和使用方法、案例应用之详细攻略
CV之DL之YOLOv6:YOLOv6的简介、安装和使用方法、案例应用之详细攻略目录相关论文《YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications》翻译与解读AbstractYOLOv6的简介1、更新日志2、模型性能旧版模型量化模型移动端模型指标YOLOv6的安装和使用方法1、安装2、在自定义数据集上微调模型单卡多卡 (我们推荐使用 D原创 2022-07-31 11:33:04 · 1807 阅读 · 0 评论 -
CV之DL之YOLOv7:YOLOv7的简介、安装和使用方法、案例应用之详细攻略
CV之DL之YOLOv7:YOLOv7的简介、安装和使用方法、案例应用之详细攻略目录相关论文YOLOv7的简介YOLOv7的安装和使用方法YOLOv7的案例应用相关论文《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors》翻译与解读地址论文地址:https://arxiv.org/abs/2207.02696原创 2022-08-09 18:59:00 · 24552 阅读 · 0 评论 -
CV之DL之YOLOv8:YOLOv8的简介、安装和使用方法、案例应用之详细攻略
CV之DL之YOLOv8:YOLOv8的简介、安装和使用方法、案例应用之详细攻略目录YOLOv8的简介YOLOv8的安装和使用方法YOLOv8的案例应用YOLOv8的简介2023年1月11日,Ultralytics重磅发布YOLOv8。Ultralytics YOLOv8是一种前沿、最先进(SOTA)的模型,它在之前的YOLO版本的成功基础上进行了改进,引入了新的功能和改进,以进一步提升性能和灵活性。YOLOv8旨在快速、准确且易于使原创 2023-03-21 22:05:34 · 5678 阅读 · 0 评论 -
CV之OD:计算机视觉领域目标检测任务代表性算法原理简介(R-CNN、Fast R-CNN、Faster R-CNN、R-FCN、FPN、SSD、YOLO~YOLOv3)、FPN、RetinaNet
CV之OD:计算机视觉领域目标检测任务代表性算法原理简介(R-CNN、Fast R-CNN、Faster R-CNN、R-FCN、FPN、SSD、YOLO~YOLOv3)、FPN、Focal Loss(RetinaNet)、目标检测算法的设计选择、经验教训和趋势目录相关论文计算机视觉领域目标检测任务代表性算法及其原理简介相关论文《What do we learn from region based object detectors (Faster R-CNN, R-FCN, F原创 2023-12-15 01:34:48 · 1125 阅读 · 0 评论 -
CNN之OverFeat:OverFeat的简介、使用方法、案例应用之详细攻略
CNN之OverFeat:OverFeat的简介、使用方法、案例应用之详细攻略目录相关论文OverFeat的简介OverFeat的案例应用相关论文《OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks》的翻译与解读地址论文:https://arxiv.org/abs/1312.6229时间2013年12月21日作者Pierre Se原创 2023-11-23 22:36:11 · 1202 阅读 · 0 评论 -
DL之RNN/LSTM/GRU:《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling门控循环神经网
DL之RNN/LSTM/GRU:《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling门控循环神经网络在序列建模上的实证评估》的翻译与解读目录《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling》的翻译与解读Abstract1 Introduction3 Gated Recurrent原创 2018-08-19 23:55:45 · 15473 阅读 · 2 评论 -
DL之RNN:《The Unreasonable Effectiveness of Recurrent Neural Networks循环神经网络的不合理有效性》翻译与解读
DL之RNN:《The Unreasonable Effectiveness of Recurrent Neural Networks循环神经网络的不合理有效性》翻译与解读目录《The Unreasonable Effectiveness of Recurrent Neural Networks循环神经网络的不合理有效性》翻译与解读摘要Recurrent Neural Networks《The Unreasonable Effectiveness of Recur原创 2018-01-30 21:54:23 · 13479 阅读 · 2 评论 -
成功解决name ‘round_up‘ is not defined
成功解决name 'round_up' is not defined目录解决问题解决思路解决方法解决问题name 'round_up' is not defined解决思路'round_up'函数没有定义解决方法官方地址:GitHub - OpenBMB/cpm_kernelscpm_kernels的whl下载地址:Links for cpm-kernelscpm_kernels 提供了在 NVIDIA GPU 上运行的 CUDA 内核,这些内核专门为 CPM原创 2023-12-21 22:08:31 · 1283 阅读 · 0 评论 -
DNN之RBF/GRNN/PNN:RBF(径向基函数)神经网络、GRNN(广义回归神经网络)、PNN(概率神经网络)两神经网络算法的简介、案例应用之详细攻略
目录Matlab中相关算法函数解释RBF(径向基函数)神经网络算法的简介GRNN(广义回归神经网络)、PNN(概率神经网络)两神经网络算法的简介Matlab中相关算法函数解释机器学习,在Matlab中,用到的重点函数解释newrbe/newgrnn/newpnn函数:创建一个精确型的RBF、GRNN、PNN神经网络,调用参数都是一样的net = newrbe(P,T,spread)cputime函数:计算执行代码所需要消耗时间,round(ceil、fix、flo原创 2018-02-06 16:46:49 · 13420 阅读 · 2 评论 -
ML之NB+CF:基于ml-100k数据集利用surprise的协同过滤算法CF和sklearn的朴素贝叶斯算法NB进行简单平均实现推荐任务实战代码
ML之NB+CF:基于ml-100k数据集利用surprise的协同过滤算法CF和sklearn的朴素贝叶斯算法NB进行简单平均实现推荐任务实战代码目录基于自定义数据集利用surprise的协同过滤算法CF和sklearn的朴素贝叶斯算法NB进行简单平均实现推荐任务实战代码基于ml-100k数据集利用surprise的协同过滤算法CF和sklearn的朴素贝叶斯算法NB进行简单平均实现推荐任务实战代码基于自定义数据集利用surprise的协同过滤算法CF和sklearn的朴素贝叶斯算法N原创 2023-12-13 22:56:26 · 849 阅读 · 0 评论 -
DL之CNN可视化:卷积神经网络理解的简介(相关论文/CNN各层级结构输出特征信息可视化)、代码实现理解
DL之CNN可视化:卷积神经网络理解的简介(相关论文/CNN各层级结构输出特征信息可视化)、代码实现理解目录卷积神经网络理解的简介CNN可视化代码实战理解卷积神经网络理解的简介1、CNN各层卷积所干的事(各个层级结构的结果可视化)(1)、卷积操作、ReLU操作、池化操作可视化红色,绿色(2)、ConV1、ConV2、ConV3等层卷积后的结果(3)、转置卷积可视化2、人脸识别任务案例:线段→人脸五官→人脸轮廓原创 2018-08-07 21:45:02 · 10785 阅读 · 2 评论 -
ML之LiR:机器学习经典算法之线性回归算法LiR的简介、使用方法、代码实现、经典案例之详细攻略
ML之LiR:机器学习经典算法之线性回归算法LiR的简介、使用方法、代码实现、经典案例之详细攻略目录线性回归算法LiR的简介线性回归算法LiR的使用方法线性回归算法LiR的经典案例线性回归算法LiR的简介 线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。原创 2018-01-25 22:09:19 · 9994 阅读 · 2 评论 -
Py之PySyft:Syft的简介、安装、使用方法之详细攻略
Py之PySyft:Syft的简介、安装、使用方法之详细攻略目录PySyft的简介PySyft的安装PySyft的使用方法PySyft的简介PySyft是一个开源库,在Python中提供安全和私有的深度学习。文档:PySyft’s documentation — PySyft documentationPySyft的安装pip install -i https://pypi.tuna.tsinghua.edu.cn/simple syft更新了一大堆包,太多了也…原创 2023-11-17 01:38:14 · 1724 阅读 · 0 评论 -
AI:人工智能的简介之AI领域基础概念术语解释之《Google发布机器学习术语表 (中英对照)》、机器学习、深度学习、数据挖掘中常见关键词、参数等5000多个单词中英文对照(绝对干货)
AI:人工智能的简介之AI领域基础概念术语解释之《Google发布机器学习术语表 (中英对照)》、机器学习、深度学习、数据挖掘中常见关键词、参数等5000多个单词中英文对照(绝对干货)目录机器学习术语表原创 2018-04-22 10:55:07 · 14011 阅读 · 1 评论 -
Py之trl:trl(一款采用强化学习训练Transformer语言模型和稳定扩散模型的全栈库)的简介、安装、使用方法之详细攻略
Py之trl:trl(一款采用强化学习训练Transformer语言模型和稳定扩散模型的全栈库)的简介、安装、使用方法之详细攻略目录trl的简介trl的安装trl的使用方法trl的简介 TRL - Transformer Reinforcement Learning使用强化学习的全栈Transformer语言模型。trl 是一个全栈库,其中我们提供一组工具,用于通过强化学习训练Transformer语言模型和稳定扩散模型,从监督微调步骤(SF原创 2023-10-16 23:42:54 · 6468 阅读 · 0 评论