题目:Tour
题意:
来自luogu——
John Doe想用最小的路程游览完所有目的地。每个目的地都用坐标xi,yi表示。任何两目的地的xi都不相同。两目的地之间的路程是两点之间的直线距离。John是这样走的:他从最左边的点开始,然后只能向右走,走到最右边的点,然后他只能向左走,回到最开始的点。每个点都要走到,并且除了出发点以外每个点只能经过一次。
请写出一个程序求符合要求的最小路程。
思路:
可以把从左走到右再走回来看做从最左通过两条路径走到最右的最小路程。
令f[i][j]表示第一条路走到了i,第二条路走到了j,i<j,且1~j全部走完的最小路程。
由于不可以走回头路,所以下一步第一条路或第二条路中一定有一条走到了i+1。
状态转移方程 f[i][j]=min(g[i][i+1]+f[i+1][j],g[j][i+1]+f[i+1][i]) ,g表示两点之间距离。
边界f[n-1][j]=gn-1][n]+g[j][n],g[1][2]+f[2][1]就是最终解。
代码:
#include<bits/stdc++.h>
using namespace std;
#define maxn 50
#define db double
#define inf (1<<30)
int n;
db a[maxn+5]= {0},b[maxn+5]={0};
db g[maxn+5][maxn+5];
db f[maxn+5][maxn+5];
void readin() {
for(int i=1; i<=n; i++) {
scanf("%lf%lf",&a[i],&b[i]);
}
}
void make_g() {
memset(g,0,sizeof(g));
for(int i=1; i<=n; i++) {
for(int j=1; j<i; j++) {
g[i][j]=g[j][i]=sqrt((a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]));
}
}
}
db dp() {
memset(f,0,sizeof(f));
for(int i=n-1;i>=2;i--){
for(int j=1;j<i;j++){
if(i==n-1) f[i][j]=g[i][n]+g[j][n];
else f[i][j]=min(g[i][i+1]+f[i+1][j],g[j][i+1]+f[i+1][i]);
}
}
return g[1][2]+f[2][1];
}
int main() {
while(~scanf("%d",&n)) {
readin();
make_g();
db ans=dp();
printf("%.2lf\n",ans);
}
return 0;
}