UVa 1347 Tour

题目:Tour

 

题意:

来自luogu——

John Doe想用最小的路程游览完所有目的地。每个目的地都用坐标xi,yi表示。任何两目的地的xi都不相同。两目的地之间的路程是两点之间的直线距离。John是这样走的:他从最左边的点开始,然后只能向右走,走到最右边的点,然后他只能向左走,回到最开始的点。每个点都要走到,并且除了出发点以外每个点只能经过一次。

请写出一个程序求符合要求的最小路程。

 

思路:

可以把从左走到右再走回来看做从最左通过两条路径走到最右的最小路程。

令f[i][j]表示第一条路走到了i,第二条路走到了j,i<j,且1~j全部走完的最小路程。

由于不可以走回头路,所以下一步第一条路或第二条路中一定有一条走到了i+1。

状态转移方程 f[i][j]=min(g[i][i+1]+f[i+1][j],g[j][i+1]+f[i+1][i]) ,g表示两点之间距离。

边界f[n-1][j]=gn-1][n]+g[j][n],g[1][2]+f[2][1]就是最终解。

 

 

代码:

#include<bits/stdc++.h>
using namespace std;

#define maxn 50
#define db double
#define inf (1<<30)

int n;
db a[maxn+5]= {0},b[maxn+5]={0};
db g[maxn+5][maxn+5];
db f[maxn+5][maxn+5];

void readin() {
	for(int i=1; i<=n; i++) {
		scanf("%lf%lf",&a[i],&b[i]);
	}
}

void make_g() {
	memset(g,0,sizeof(g));
	for(int i=1; i<=n; i++) {
		for(int j=1; j<i; j++) {
			g[i][j]=g[j][i]=sqrt((a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]));
		}
	}
}

db dp() {
	memset(f,0,sizeof(f));
	for(int i=n-1;i>=2;i--){
		for(int j=1;j<i;j++){
			if(i==n-1) f[i][j]=g[i][n]+g[j][n];
			else f[i][j]=min(g[i][i+1]+f[i+1][j],g[j][i+1]+f[i+1][i]);
		}
	}
	return g[1][2]+f[2][1];
}

int main() {
	while(~scanf("%d",&n)) {
		readin();
		make_g();
		db ans=dp();
		printf("%.2lf\n",ans);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值