Loss
文章平均质量分 93
介绍各种常用的loss,主要在于理解,以pytorch实现为例
Mr.RottenPeach
所谓无底深渊,下去,也是前程万里、
展开
-
交叉熵的故事
《关于交叉熵的故事》 做视觉三年多了,自己能力虽然提升了,但是总感觉没有沉淀下来一些可见的东西,所以从去年年末开始写博客,或者是翻译论文,或者是整理对一些知识理解的文章,总的来说赠人玫瑰,手有余香吧,还是挺有收获的,所以还是会继续坚持,把一些相对抽象的数学公式以故事的形式呈现出来,这也感谢很多前辈的文章。 Key Words:熵、KL散度、交叉熵、BCE Beijing, 2020 作者:RaySue Code: Agile Pioneer 信息量 交叉熵是信息论中的一个.原创 2020-07-18 11:09:48 · 453 阅读 · 0 评论 -
Center Loss
《A Discriminative Feature Learning Approach for Deep Face Recognition》 可鉴别性的特征学习用于人脸识别,对每个类别维护一个Center vector,然后对损失函数增加一项到Center向量的L2损失。使得各个类别的类内分布变小实现intra-class的compactness,从而特征更具区分性,对于人脸识别来说能够增大识别的把握。 Key Words:Convolutional neural networks 、Face .原创 2020-07-09 18:44:17 · 2156 阅读 · 0 评论 -
Focal Loss
Focal Loss for Dense Object Detection 通过对不同样本的loss进行加权,从而达到聚焦于学习困难样本的方法,该方法普适性很强。 Key words : Sample balance、Hard example、Focusing parameter Subjects: Computer Vision and Pattern Recognition (cs.CV) ICCV2017 作者:RBG和Kaiming Agile Pioneer 交叉熵的计算形.原创 2020-07-09 11:10:29 · 2704 阅读 · 0 评论