Paper
文章平均质量分 94
Paper整理
Mr.RottenPeach
所谓无底深渊,下去,也是前程万里、
展开
-
Objects as Points 论文总结
《Objects as Points 论文总结》 我逐字翻译了CenterNet 之 Objects as points的论文,这里主要整理CenterNet中提到的知识点,以及写下自己的感悟和看法,主要从主干网络、监督方式以及我目前对anchor free的理解。方便后续对CenterNet的复习。 Key Words:Bottom-up、监督方式、Anchor free、推理增强 CVPR, 2019 Agile Pioneer 文章目录Bottom-up监督方式目标检测姿态.原创 2020-11-20 21:46:34 · 4411 阅读 · 0 评论 -
孤读Paper——《FCOS: Fully Convolutional One-Stage Object Detection》
《FCOS: Fully Convolutional One-Stage Object Detection》 简单、鲁棒的Anchor free目标检测算法,核心思想 是利用FCNs-based的方式来做目标检测,对featureMap上的结果进行逐像素的预测回归,通过multi-level FPN的不同层选取预测不同尺度的目标解决重叠部分预测模糊的问题,对于低质量的目标框提出了center-ness分支来预测像素到相应目标框中心的得分并与分类的得分相乘得到最终的得分用于NMS,预测head的三个分.原创 2020-11-19 21:53:36 · 2667 阅读 · 0 评论 -
孤读Paper——《CenterNet:Objects as Points》
点即是目标 建模对象为单个的点——即目标框的中心点。我们的检测器使用关键点估计来找到中心点并且回归出全部其他的目标属性,比如大小,3D位置,方向甚至姿势。我们基于中心点的方法称为CenterNet,是一个端到端可微的检测方法,比起基于目标框的检测器更简单,更快而且更准确。尤其是姿势估计部分的关键点分组,比起openpose的复杂的后处理,该论文的方法更巧妙,通过对各个关键点直接回归,然后通过回归的结果对应去找自下而上得到的关键点结果,进行单个实例的关键点分组… Key Words:KeyPoin.原创 2020-11-18 14:57:15 · 3657 阅读 · 0 评论 -
孤读Paper——《Deep Snake for Real-Time Instance Segmentation》
《Deep Snake for Real-Time Instance Segmentation》 论文借鉴了snake算法,将snake算法做成了轮廓结构化特征学习的方法。DeepSnake是基于轮廓的两阶段实例分割的方法,是接在目标检测后面的方法。通过目标检测的定位来初始化建议轮廓,然后对建议轮廓进行变形,是其对目标更加贴合。论文使用了循环卷积取得了比通用的图卷积能更好的挖掘轮廓的周期图结构。 Key Words:Snake、Two-stage、Instance segmentation、 Ci.原创 2020-07-01 17:31:58 · 2837 阅读 · 0 评论 -
孤读Paper——《ATSS:Adaptive Training Sample Selection》
《ATSS:Adaptive Training Sample Selection》 此论文一出感觉是在告诉像我们这样的小朋友根本没有深入理解目标检测。论文醍醐灌顶的指出了影响Anchor-based和Anchor-free效果的关键在于正负训练样本的定义。论文提出的自适应的训练样本选择方法能够缩小Anchor-based和Anchor-free效果的差异。而在每个位置铺设多个类型的anch...原创 2020-04-15 15:32:38 · 2911 阅读 · 0 评论 -
孤读paper——《GhostNet:More Features from Cheap Operations》
《GhostNet:More Features from Cheap Operations》 发现一个点并解决就是一篇CVPR,该文章主要发现了优秀的网络的特点是feature map提取过程中的冗余性,这种冗余性体现在很多成对的feature map间很像,就好像彼此的“ghost”,而这种特征冗余性对于理解图像来说还是必要的,所以文章把feature map分为两种,一种是本质特征,一...原创 2020-04-05 18:37:13 · 4915 阅读 · 0 评论