图像分类
文章平均质量分 95
静下心来,领悟经典模型的思想
Mr.RottenPeach
所谓无底深渊,下去,也是前程万里、
展开
-
简记Inception系列
《简记Inception系列》 Inception系列模型的发展过程,以及其中利用的很多经典的模块,包括产生的一些结论,在后续的分类网络,包括图像语义分割网络当中的一些模块都是如出一辙的。所以对Inception系列模型的整理和记录,有助于对深度学习模型设计的理解,从演化过程来理解Google团队的科研思路,对于不同的问题的不同解决方案,从而形成自己的创新思维,本文简单记录一下Inception系列网络的各个关键概念。Key Words:Inception moudule、Batch Norm、.原创 2020-12-10 21:02:08 · 5486 阅读 · 0 评论 -
简记ShuffleNetV1&V2
《简记ShuffleNetV1&V2》 组卷积和深度可分离卷积其实是一个思想,都可以减少模型的参数量,那么如何合理的利用这个思想来设计模型,既要使用又不能无所顾忌的使用。ShuffleNetv1和v2从两个角度给出了很好的阐述。ShuffleNetv2提出了提高网络速度设计的4个准则,并基于此设计了网络,这些结论是很值得学习和深思的。Key Words:GConv、DWConv、 Beijing, 2020ShuffleNet作者:Face++ Agile Pioneer.原创 2020-12-09 19:34:57 · 5503 阅读 · 0 评论 -
简记MobileNet系列
《简记MobileNet系列》 ImageNet竞赛至今,为了追求精度,模型深度越来越深,参数量也越来越大,这导致移动端场景的算力是无法支撑的。所以轻量级模型应运而生,Google提出了MobileNet系列模型,专注于移动端或者嵌入式设备中的轻量级CNN网络,在保持模型性能(acc)的前提下减少模型的参数量。重新回顾了mobilenet系列,可以看出,准确率在逐步提高,延时也不断下降。虽然在ImageNet上的准确率不能达到sota,但在同等资源消耗下,其优势就能大大体现出来。Key Word.原创 2020-07-30 18:26:54 · 3007 阅读 · 0 评论 -
简记AlexNet
《简记AlexNet》 文章《ImageNet Classification with Deep Convolutional Neural Networks》介绍的网络结构,是早期的经典结构,在2012年以较大优势夺得ImageNet竞赛的冠军,作者是Hiton的学生。Key Words:ReLU、LRN、Overlapping Pooling、Drop out Beijing, 2020作者:多伦多大学的Alex Krizhevsky等人 Paper:http://www.cs..原创 2020-07-28 10:40:36 · 173 阅读 · 0 评论 -
简记SqueezeNet
《SqueezeNet》 对移动端算力有限的情况下对深度学习推理的场景越来越多,模型压缩技术应运而生,同为Deep Compression团队推出的SqueezeNet一经问世就广为流传,奉为经典,到目前为止,这篇论文的影响还是巨大的,在众多深度学习分支目标检测、分割以及分类等任务的模型压缩加速中,依然是重要轻量级backbone选择,如目标检测的SqueezeNet-ssd,甚至基于关键点的CornerNet目标检测算法在其加速版本CornerNet-lite中也是参考了SqueezeNet,并设.原创 2020-07-22 15:32:59 · 5103 阅读 · 0 评论