CS 143 Introduction to Computer Vision
Fall 2013, MWF 1:00 to 1:50, Kasser House, Foxboro Auditorium
Instructor: James Hays
TAs: Hari Narayanan (HTA), Libin "Geoffrey" Sun, Greg Yauney, Bryce Aebi, Charles Yeh, and Kurt Spindler.

Course Description
Course Catalog EntryHow can computers understand the visual world of humans? This course treats vision as a process of inference from noisy and uncertain data and emphasizes probabilistic, statistical, data-driven approaches. Topics include image processing; segmentation, grouping, and boundary detection; recognition and detection; motion estimation and structure from motion. This offering of CS 143 will emphasize the core vision tasks of scene understanding and recognition. We will train and evaluate classifiers to recognize various visual phenomena.
The course will consist of five programming projects and two written quizzes. This course satisfies the graduate A.I area requirement.
Prerequisites
This course requires programming experience as well as linear algebra, basic calculus, and basic probability. Previous knowledge of visual computing will be helpful. The following courses (or equivalent courses at other institutions) are helpful prerequisites:- CS 123, Introduction to Computer Graphics
- CS 129, Computational Photography
- CS 195-F, Introduction to Machine Learning
Textbook
Readings will be assigned in "Computer Vision: Algorithms and Applications" by Richard Szeliski. The book is available for free online or available for purchase.Grading
Your final grade will be made up from- 80% 5 programming projects
- 20% 2 written quizzes