探寻《矩阵论》与AI的结合

前言:矩阵论是对线性代数的延伸,很有必要深入研究。矩阵与泛函数分析和凸优化存在着密不可分的关系,尤其是内积空间部分。研究矩阵论可以加深对PCA,SVD,矩阵分解的理解,尤其是第一章入门的线性空间的理解,在知识图谱向量化,self_attention等论文中会涉及大量的矩阵论的知识。本系列博客对此做一个学习心得总结,省略掉矩阵的微分方程等运算部分,重点论述和AI相关尤其是与结构化约束和无向图推理相关的部分。学习一本书的最好方法是看两遍以上,第一遍按顺序学习,第二遍倒着看一遍。比如《矩阵论》的最后一章节关于特殊矩阵的论述,第二遍可以以这个为出发点,重新思考前面的论述,相信会提升很多。从特殊到一般的归纳总结是人类研究自然世界规律的基本方法。关于图模型和深度学习的融合,可以看看DeepMind和谷歌大脑的论文。图模型推理这篇博客地址:https://blog.csdn.net/randy_01/article/details/81743882 联结主义和符号主义的融合是个大难题,但是需要对两个学派有很深入的理解,最起码数学基础应该过硬。目前AI研究的热点大致包括两部分:①Auto ML,包括遗传算法优化神经网络参数等等②逻辑推理,以知识图谱为基础的研究,包括专家规则系统,cvt节点的图谱,kb_qa,神经规则推理。其中优化损失函数是一个重要的研究方向,比如1996年的lasso论文养活了一大批后来的学者。成为研究机器学习专家必须精进以下数学:《矩阵论》+《实变函数与泛函数分析》+《凸优化》+《统计学》,泛函数分析在AI中属于较高级的应用了。建议学习这些学科最好用国外的教材。花费2年左右的时间精研这些数学著作是有必要的,否则会一直停留在应用层面,很被动!有了数学工具,再结合物理学,神经生物学,计算机等学科开展AI研究,将会顺利一些。有人可能不太知道物理学和Ai研究有什么关系,本人认为AI和物理存在着一定的相关性,都是揭示和发现自然世界的规则。AI的研究一定靠规则,尤其是推理。借鉴物理学AI可以更好地发展。目前国内高校的基础研究需要下更大的力度,西湖大学迈出了第一步。目前国内众多高校开设的所谓Ai专业其实是为国家增加人口红利而已,都停留在应用层面,尤其是硕士。后续的博客将会增加物理学和神经生物学基础知识,再后面将介绍AI基础研究的进展,比如胶囊网络提出的原因,神经网络的缺陷,推理的进展,本体论这些。随着研究的深入,本人相信最后一定会进入知识图谱的领域,因为当下只有知识图谱才能真正解决AI的难题。本着一以贯之的原则,本系列文章分成两篇博客论述,并且会对原著进行扩展然后探索在AI中的应用。本系列博客按照以下篇幅展开论述,并且会结合《凸优化》,因为矩阵和《凸优化》紧密相关:

上篇:基础部分

第一部分:矩阵的线性空间,矩阵的意义;

第二部分:矩阵的特征值分解,特征多项式以及矩阵多项式;

第三部分:欧式空间的内积与度量矩阵;

第四部分:矩阵的范数理解与AI应用;

第五部分:矩阵的正交分解理论以及PCA,SVD;

下篇:探索研究与应用,重点在图模型推理部分(图模型和神经网络融合)

第六部分:矩阵的投影理论;

第七部分:矩阵与AI:

       1、矩阵的方法论研究(切入点为特殊矩阵的研究,从特殊到一般的归纳总结是人类研究自然世界的基本规律);

       2、①最小二乘法②对称正定矩阵,矩阵不等式和分类超平面③损失函数的结构化约束④重要的矩阵:拉普拉斯矩阵⑤PageRank⑥无向图的卷积算子(谱卷积算子,相对于图卷积算子)⑦图模型推理.

第5~8部分安排在下篇博客中,这部分既是实际应用又是对第一部分的深化,比如对损失函数结构化约束的深入研究,图模型与联结主义融合的研究等:

第二篇博客地址:https://blog.csdn.net/randy_01/article/details/86618044

在进入正题之前,有必要把《线性代数》里面重要的知识提炼出来:

一、.对称矩阵:①21b6b13b2d25f2ccbada86cc4f2e5e1a.jpeg1fd3d9af624ee746ef9024765565d314.jpeg特征值分解后的特征向量系为标准正交特征向量系

二、可逆矩阵:①1d6dcb665ea9183be1de55bb1621e4c6.jpeg755ef5d5776beb2e4facb8980def7c99.jpeg经过行初等变换后可以化简为E。又称为满秩矩阵,非奇异矩阵。

三、正交矩阵:

19c50f8c6cc22ed57c4b933f309a3c99.png

 214bebdc81c2e85c4e3843ef41de9f49.png

 正交矩阵对一个向量变换成为正交变换,变换后的向量模不变。经典的二次型可以化简为标准二次型,就是对原变量进行正交变换。

四、向量的坐标表示:

5ce7e68e6553274f83091b60ef253639.png

 这部分和《傅立叶变换》中傅立叶级数的结果一致,只不过一个是向量空间,一个是函数空间。

 柯西—施瓦茨不等式的证明:构造函数,常量变化量

bc447461879e96ab4751d6a87f8bd006.png

 有5个不等式很重要,涵盖了统计学,线性代数以及泛函数分析:①柯西-施瓦茨不等式②Jesen不等式③赫尔德不等式④马尔可夫不等式⑤切比雪夫不等式。在赫尔德不等式中,p=q=2时它就是柯西-施瓦茨不等式的上界。在证明指数和的对数函数是凸函数时用到了柯西不等式。

f33a116a3ab2c541db64debe9d359a0b.jpeg

五、矩阵相似性:这部分以特征值分解为基础,精华是方阵A(可逆)与它的特征值对角阵相似的充要条件是A分解后的特征向量系为n个线性无关的向量组。

六、矩阵的秩:①经过初等变换后非0行或者列的个数取最小数②线性无关的列(行)向量个数③分解后特征值非0的个数。

七、方程Ax=b的解x是凸集,证明如下:

02ab90e9509b395abb2982637e7c5f0b.jpeg

 这个方程的解有三种情况:

ca4e8d62d516e9a0fe44e4eaf316d531.jpeg

在实际工程中错在大量的奇异矩阵,这些矩阵的逆矩阵是广义逆矩阵。伪逆指的是矩阵经过svd后取逆运算。

 八、线性无关的几何解释:矩阵和《凸优化》紧密相关,学不精《凸优化》,对矩阵的理解相当于停留在初级阶段,AI理论研究 也不会深入。线性无关的向量组其实就是这些向量不管如何组合,永远不共面,各自线性独立,比如《凸优化》中下面的这个四面体:

9d813c23d8715d05f27b8b68a88e4899.jpeg

v1-v0,v2-v0,v3-v0这三条边各自线性独立,是线性无关的。但是再加上v4-v0的话就不是线性无关的向量组了,因为v4-v0与前三个向量求和后所在的平面共面。

单纯形的定义是由仿射集展开的,它是多面体的特殊形式。

上篇:基础精进

1.线性空间,矩阵的意义

1.1 线性变换

这部分内容是理解矩阵的基础也是最关键的部分。对于线性空间的基本概念不必多解释,都说矩阵的本质是线性变换,这里有必要总结一下。一般而言,矩阵乘以向量后结果仍然是向量,相当于对向量进行了变换。这个过程可以用《实变函数与泛函数分析》很好地解释。矩阵的变换相当于有界线性算子,从函数空间到函数空间的转换。矩阵是一种映射,输入即定义域是空间中的点(函数),输出也是函数空间。那么矩阵的值域是什么?

某个空间中所有向量经过变换矩阵后形成的向量的集合,通常用R(A)来表示。设A是m*n的矩阵,称其列向量构成的子空间为A的值域空间,R(A),即任意n*1维的向量x,有Ax=b,b是A值域空间中的一个元素,所有的b构成了A的值域空间。A的零空间由所有满足方程Ax=0的x构成,N(A)。

假设你是一个向量,有一个矩阵要来变换你,这个矩阵的值域表示了你将来所有可能的位置。值域的维度也叫做秩(Rank)。值域所在的空间定义为W空间。

矩阵的变换包括方向和幅度,方向指的是坐标轴,幅度一般值向量的特征值。举一个最直观的例子:

比如说下面的一个矩阵:    3eb53efb7bd3082d52ec0ed7ccac37e9.png 它其实对应的线性变换是下面的形式:

cb19b4a4ae10fdba199afeef476b76bd.png 因为这个矩阵M乘以一个向量(x,y)的结果是:

dc852c4a7dea74188baf91a8865796a4.png 上面的矩阵是对称的,所以这个变换是一个对x,y轴的方向一个拉伸变换(每一个对角线上的元素将会对一个维度进行拉伸变换,当值>1时,是拉长,当值<1时时缩短),当矩阵不是对称的时候,假如说矩阵是下面的样子: 

e246895959ebd62f676b88b48db6a7a9.png 它所描述的变换是下面的样子:

4e6bf01d790f369a810b1d2a57967fd4.png

下面从最专业的矩阵论理论,具体解释矩阵的本质。前面的变换其实是对向量的左边进行拉伸或者旋转,所以先介绍一下在矩阵论中坐标轴,坐标系和坐标的概念。   

对于线性空间Vn   ,空间的基e1,e2,……是一组非线性相关向量,就是这些向量组成的行列式不为0。空间中的任一向量都可以写成这些基的线性组合,这些组合系数称之为向量的坐标。空间的基对应空间的坐标系,坐标是对应在坐标系中的。那么一个变换矩阵应该如何理解呢?现有空间里的一个向量x,Tx为向量的象,也就是经过变换后的向量。现推导如下:

 a27e05ca8cc6c644d1833d1176c38b12.png

补充:

a0f6c3406b666cc793b28250cf6bfcb4.jpeg

 29a8d8095599da6451f260e5a8d44d95.jpeg

 0a05d463e476c30c4186aa9da3bf5f23.jpeg

 0fa994f23b991ccb43fcb1d93da8104d.jpeg

 证毕!

1.2 矩阵的正定性判断

      1.21 定义

首先半正定矩阵定义为: b5018589e6c11ded862791523c33e6cc.png其中X 是向量,M 是变换矩阵

我们换一个思路看这个问题,矩阵变换中,MX代表对向量 X进行变换,我们假设变换后的向量为Y,记做Y = MX。于是半正定矩阵可以写成:6b816ff4e4f9b946b0f9641163f476c3.png这个是不是很熟悉呢? 他是两个向量的内积。同时我们也有公式:a13e6a61dde8a693432762ae882ec2b7.png

||X||,||Y||代表向量 X,Y的长度,1d444a86ad1cdf75f5c8471986d5e855.png是他们之间的夹角。 于是半正定矩阵意味着594e6e7f3a05d5c6ab16d53a04c549b6.png, 这下明白了么?正定、半正定矩阵的直觉代表一个向量经过它的变化后的向量与其本身的夹角小于等于90度。

下面从上面推导的过程来理解,考虑矩阵的特征值:若所有特征值均不小于零,则称为半正定。若所有特征值均大于零,则称为正定。

矩阵经过特征值分解后的特征值是一个对角阵,就是原空间某一个基在变换后的空间的长度变化系数,大于0表示方向一致,小于0表示方向相反,每个向量都会经过变换矩阵A的每列系数组合变换,而A经过分解后分为特征值和坐标轴两部分,每个特征值表明了基的自身变换方向与幅度,>0表明同向变换。如果每个特征值都>0的话,由于向量是由空间的基线性组合而成最终导致变换后的向量与原向量同向变化。

       1.22 半正定矩阵的凸集

              1.221 半正定矩阵是凸集,更准确地说是凸椎,请看如下定义:

ea938cba2febc631e5d7352e7a11d205.png

9c6f56ac4c432edb7513b800cd38670b.png

790b6e36447a37a419ff949317943b3d.png

 半正定矩阵的约束条件:①主对角线元素>=0,由矩阵的特征值分解的行列式可以证明②行列式>=0,因为特征值全部>=0,由任意n阶矩阵与以特征值为主对角线元素的上三角矩阵相似定理可以得出行列式>=0,证毕!

              1.222 半正定矩阵应用举例

              最有说服力的例子莫过于凸函数的二阶条件判断。

6584196318752967fa8e7b53f882b1b9.png

7ff76607923b919332f04e158f69fa8b.png

二阶导数形成如下的半正定矩阵:

ecd09c7503b6a8aefd833f1fce80388d.jpeg

 大众所熟悉的最小二乘法损失函数公式的二阶导函数就是矩阵P:

2038cf1a21adc7bc86cba92ec60d5677.png

 这个公式表示的是中心不在原点的椭球。

2.矩阵的特征值分解以及特征多项式和矩阵多项式

矩阵的特征值分解《线性代数》中就有论述,这里重点论述特征多项式以及矩阵多项式。

2.1 特征多项式

c0e0a8b53dabdaeb1e661a5d7ee6ff18.png

 上述多项式方程也可以表述为:083fac9ac321aafb4180db4f2773b1da.png,展开后可以知道,0dd5c2c899087c80df9db1c369a9689c.png877bd8d364312141465d901c2e6da43b.png  的系数分别为:

e7c3e5ee4b87bd2ecd3a88e414a7223c.png9c97da8d8950fbfc0bf27a0091a0cfff.png  d7803a935e69a5f5a8d158c4af1ff180.png  。于是我们可以推导出c4b9804f1a43acb7b38657d561be7c73.png。引入记号trA = bf39b7e9b9d566d82a039ac806403bc3.png  ,它是矩阵的迹。上面的公式表明:矩阵A的所有特征值的和等于矩阵的迹,所有特征值的乘积等于detA。

矩阵的特征值分解在《凸优化》中有很重要的应用:

1.8d03b2758d0e1ff7d6643a70a5d44771.jpeg

2.c577383c7d5334e49143d8faa32f9dc5.jpeg

ff573424bc3f91f8cc231ae630cb8d24.jpeg

5d22f893375777519fa134aa2193e26d.jpeg

82de7383feb6d91f94888cdab593d281.jpeg

1c3c9f3aedf2410bfabd03717963b62a.jpeg

ecb6adc758f93f1970e71668216f852b.jpeg

2.2 矩阵的相似性定理

ab1e91488c2c05daf6c8203c7db2f85e.jpeg

 在《线性代数》中关于矩阵的相似性论述主要集中在矩阵和对角矩阵的相似性。根据定义1.15就可以知道,p为矩阵A的n个线性无关的特征向量系,B为由A的特征值组成的对角阵。再进一步,如果A是n阶对称矩阵,那么p就是标准正交特征向量系。在《矩阵论》中论述更一般的情况:p的组成不全是特征向量系,比如p中可以有一列是特征向量,其余的不是,那么情况是什么呢?论述这样的一般性主要是引出《矩阵论》中最重要的定理:哈密特-凯莱定理(Hamilton-Cayley)。为了证明这个定理,首先引入下面的定理:

67f5c3943123b3464d92f8d5a01fe243.jpeg

 20872586f9e76bb57f69d21f5821a3ff.jpeg

 c4ddb7acd2f85b5835c9fc5daad6f9b3.jpeg

 d190d86260e95ee106a127c0a5fd5251.jpeg

 44b9a2095a0b46413742f3207660fa69.jpeg

 为了更进一步消化这个定理,先举个例子:

0db31a682069d49e357ed40ccf6efdb2.jpeg

 96b6f289fb000631e8809483f710a4b0.jpeg

 67cf888aae33afa72bee5071c25e84f2.jpeg

662b258a0582f6111082552b4ea8efc3.jpeg

 下面引入哈密特-凯莱定理:

f34fa93a0576efe24bd02c3324968e16.jpeg

 ed881d43d7f1bca5636cec1ddcc8c5c0.jpeg

 d8f0438f81ef6dd9b18e9777c244182e.jpeg

 a0cc0d28eb6a68ffbaa638ca4a88b52a.jpeg

 f51889d388df8004578004ca89207a2d.jpeg

 从上面的证明过程可以看出,研究矩阵的相似性有多么的重要,为了更进一步研究矩阵的相似性,再来一个例子:设幂级数

cf42523fc1ff612cf3a6c1d4a488d586.png的收敛半径为r,如果方阵A满足1f61e17ce7b3ad8808c2a6ba899e542b.png,则矩阵幂级数94ea2395c499025441e0499fc2d3e703.png是绝对收敛的,如果a2f402c79149bbedc0af97d46bbb9865.png,则矩阵幂级数是发散的。

分析:在《傅立叶变换》的博客中已经详细讲解了幂级数分解。由1f61e17ce7b3ad8808c2a6ba899e542b.png证明矩阵幂级数绝对收敛 ,只需证明矩阵幂级数的范数收敛即可,即caa18357ba116b0815421bf34293fa35.png收敛。 只需证明||A||<r即可,忽略。发散的证明,如果变量的幂级数的每一项都>r,则发散。已知条件谱半径>r,则可以得到对角阵的特征值幂级数是发散的。也就是说只要证明A的特征值幂级数是发散的就可以了。于是我们想到了他的相似三角阵。由于谱半径>r,所以任一特征值均>r,所以特征值幂级数发散,也就是A的相似矩阵幂级数发散,所以A的幂级数发散。证毕!

哈密特-凯莱定理有很多推广和应用,比如:

7400e68e9b0bdf2a5b7534ace2eeaadb.png

 0f6e25215e04dfac29af16c3e713f2c5.png

 0d8533a5662fe6b4ae14eb35aa410923.png

 bba9b038049be4fe0921a116afade2b2.png

 下面举个例子:

ddb271dff78fb9431e738c846433f1eb.png

 f0be7a14c638d512eff40b33dc099df9.png

 a785e6639f8a2d0392897567e399043f.png

69058da37c492b22735748454a7b8485.png

3.欧式空间的内积与度量矩阵

欧式空间属于特殊的线性空间,在《实变函数与泛函数分析》的第六章里介绍了Hilbert内积空间。函数可以看作是无限维度的空间向量,比如指数函数的幂级数分解后得到的多项式组合,每个项都可以看作是指数函数的基。所以指数函数(向量)是关于基的线性组合。包括正交三角函数系,也是三角函数的基。重点看一下内积的三个性质:

内积的定义:

13e200fc45cd48282f888f91b2cb5e69.png

 e81b8416033b14f43275f18a850d3759.png

 内积的性质:

12bd451eda643349b57a36c3e75da5c9.png

 关于性质3,可以进一步展开:有两个向量X和Y分别关于基x和y线性组合,其中X = 549aa8298d7a028819cc0c86911adac1.png ,Y = 7bbcf3ff63610dc22fbd8a597d768196.png,则按照性质3的展开式进一步得到如下:

2491ec10fdfa77c319406d9739abddb1.png

 f5680a6a96f3357f0e2f044277a99c35.png

 以上公式表明,只要知道了线性空间中基的矩阵A,就可以得出两个向量的内积。矩阵A成为度量矩阵,可以看出,度量矩阵是对称阵和非奇异矩阵。由于他的对角线上的值全部>0,因此它又是正定矩阵。

度量矩阵的涵义:度量矩阵完全确定了内积,于是可以用任意正定矩阵作为度量矩阵来规定内积。向量所有可度量的量都可以用内积来刻画。

6b1eaabce1232f4e3c3199f62855775c.png

 初中数学中,向量的夹角规定为e9ca56148780702b8c8ffa198241760d.png,是由余弦定理推导出来的。 由于余弦值<=1,所以我们可以得出:

71625a96c30b305f05cdcaa3fba6ea8f.png或者25a4bc0f5f5f82f1796d139c4e2bae96.png

4.矩阵的范数

4.1向量范数

注意:在《矩阵论》中的范数严格意义上是《实变函数与泛函数分析》中的"半范数",满足以下3个性质的范数就是半范数。

4028b8a15928054a2b4d8ce29176ce81.png

在本人的博客《实变函数与泛函数分析学习笔记(二):赋范线性空间》https://blog.csdn.net/randy_01/article/details/82851511

 中有详解介绍。矩阵属于线性代数范畴,几何和代数可以是统一的。下面介绍向量的1阶,2阶和无穷阶范数。

无穷阶范数:

7af39cc0884032a088ce3bd0ea8fb572.png

 它是e97d92457b9b26d21313a9478dc83a28.png上的9a708ed4fda2c6d9ec7341054e7a96ac.png  -范数。证明过程很简单,省略掉。这个范数可以扩展到函数,函数可以看作是无限维度的向量,作两个实线性空间的函数,取差值,然后再取差值中的最大值就是无穷阶范数了。

1阶范数:

a97bbc68a43b1d8dddaf6edaacf9eabb.png

 它是e97d92457b9b26d21313a9478dc83a28.png上的1 -范数,同样省略掉证明,很简单。在深度学习的语义相似度中,利用BiLSTM+self_attention获取到句子对儿语义表示后做差然后取1-范数,用来衡量两个句子的语义差异,称为ma(曼哈顿)距离。最后用exp(-||x1-x2||)作为最后打分函数的映射。事实上exp函数在Ai发挥了十分重要的作用,关于exp函数性质的深入研究,在《傅立叶变换最详细的解读》中有详细讲解。https://blog.csdn.net/randy_01/article/details/83217314

25ec8a4e60664e8e8f7564aafe8652b1.png

 更形象地解释三种范数:9a708ed4fda2c6d9ec7341054e7a96ac.png  -范数是PR和RQ中最长的一边,1-范数是PR+RQ,2-范数就是PQ。在一般情况下,ma距离衡量两个句子的语义差异效果更好,可以防止语义丢失问题。

赫尔德不等式是对范数的扩展,在泛函数分析有详细论述。

来看一个精彩的椭圆范数:A是任意n阶对称正定矩阵,x为列向量776d4a6a344d8ad197ece1d0409c62d8.png,则函数

7a1b6a4ebf86552c7f978b370db95033.png

 是x的椭圆范数。

d7304401f24fb5dbd83952531921c386.png

 227c1c26869a9931e4eececd6a6665b6.png

在区间[a,b]上定义的实连续函数的集合,构成R上的一个线性空间,可以验证:

f3c358ae9a870762dc3f7bdd45f85a6f.png

 4.2 矩阵范数

设A09a0bd481349932494c7d9f66c48d5c2.png,定义一个实值函数||A||,他满足以下三个条件:

34d4f8a671f5408f6b0ee8077185cd02.png

 由于矩阵有乘法运算,因此再增加一个相容性:

011dc2d5d3679460a487af9ce05460dd.png

 满足以上4点,称||A||为矩阵A的范数。

下面举例说明几个重要的矩阵范数:

1.已知A=bd791b87ced0a3fe18c084788737ba51.png,则存在以下两个范数:

795d09f6c5f79756e1a0a8cbf0218c3a.png

 由于矩阵经常作为向量的空间线性变换(一种映射,规则)出现,因此应该建立矩阵和向量范数的相容性。

定义:对于155885171c6088cbb105c0e4187ea198.png上的矩阵范数fc8d31907c8e4b3a72d642374ba72103.png7e7ed54f4d0b408af8a29b369dc79a79.pngd4a21638ed93b9f614574ae2122d2219.png上的同类向量范数aa67d693df8c42014dffeba5a34f570d.png,如果a6cf9f65efc1ba2f27d5de4facd4e474.png

 则称矩阵范数 ce3c5a4336caf4704e635def6f4f50c1.png与向量范数 671df12f0ed5df53b79de8e32a0060e1.png相容

2.矩阵的Frobenius范数以及AI应用

设A=e9ea66edf6aea645fe9d8855d0644e21.png,则924df79a03d160dda84c2f6ed511e67f.png是矩阵的Frobenius范数。

证明过程忽略,有一点需要注意:909ad37b68fcf69e53307142ee1c0df6.png,则有65fdffe17b18060535db3becea4842ab.png

即矩阵范数 7157162d73abe383c45253c47a6e3190.png与向量范数 56fb8b424b507539bc8fdd68ce0014b3.png相容类似于向量的2-范数,把一个mxn的矩阵看成是碾平的向量,取2-范数即可。

通常所说的矩阵一阶范数指的是列和范数,即取每列绝对值之和最大的数。矩阵的F范数应用是很广的,比如用BiLSTM捕捉到一个句子的embedding,维度为[steps,2u],用最后的压缩向量会丢失很对语义信息,那么构造如下的矩阵A,捕捉到句子的多个维度,最后与H做乘积得到最终的语义表示AH,维度为[c,2u],然后碾平。这个过程的核心就是矩阵的F范数结构化约束,把这个约束加载到损失函数中最为最后的总损失函数。

88897d8269b90d672a7129b6e3cb619c.png

最后的语义表示为AH,把上面的F范数作为损失函数的结构化约束,得到最后的目标函数。在知识图谱的transD论文里关于entity和relation的相互投影问题以及h和t不在一个空间的问题,可以很好地用矩阵论来解释。

3.矩阵的列和范数,谱范数和行和范数

设A=6cd9a19a602bc49da0ed42f4f207e953.pngebaf2036f45050164e5d7ff85d90f8df.pngf164ce29285f949bfbd03f6b95b522af.png  ,则从属于向量x的三种范数||x||1,||x||2,||x||d72af7efcc7b0242271faa26a0d71f1f.png的矩阵范数分别为:

632cf8c06eaaca7d2f5fb3033736e57b.png

 221f5d9b0d8b0149b834795618ed92c5.png

 70aca6702d52e975d66388ffdfd2a507.png

接下来进一步分析谱范数:

b43ba4c09611926913df95cf54d3d87a.png

40684014a6d7f65a275e19b8e01cc4b1.jpeg

 问题转化为凸优化,目标函数是minimize s,约束函数是矩阵不等式(广义不等式)。

5.矩阵的QR分解以及PCA,SVD

矩阵的QR分解理论对PCA和SVD具有非常好的指导意义。矩阵论里面非常好地阐释了QR分解和SVD的关系,这里不做推导了。PCA其实是SVD的外部封装。特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:

如果说一个向量v是实对称方阵A的特征向量,将一定可以表示成下面的形式:7fa90986dbf3c0005bfa85e8f54d1dcd.png 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量。特征值分解是将一个矩阵分解成下面的形式:9eadfe93b3a5ffacd045b1c655b17586.png 其中Q是这个矩阵A的标准正交特征向量系组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。这个结论其实是QR分解的一个推广,这个公式更能直观地解释第一部分关于半正定矩阵的解释。我们来看看奇异值分解和PCA的关系吧:

5.1 矩阵的正交对角分解

 a9a6151168941be347463509ae891dd5.png

684d57573d00bdd8aa63d2a60a51d86e.png

ddd90982dd940caec7e96526437913d5.png

 5.2 矩阵的奇异值分解

f99f45ae81a91d08d6d80c395d63d938.png

c19c919377cb0dc990e61d1cb852ef96.png

2c2ffbdd28bdee421352343183026d46.png

b67b5589b23dbaa408c9aeb93859c32c.png

3311618f4a2e4df3d4f9913fd5ac4aa0.png

fb004a8b0ee10e259050b9558e478b4e.png

1f45eece10098620f74677af64fe3cbd.png

dc852c4a7dea74188baf91a8865796a4.png1

1122a8022e64d6e3b0a3e620036a5ac3.png

8a315fa710e374b04dedcdd573da3209.png

fd507ebaa2fde2d32b1f57177174b7de.png

上述是《矩阵论》对svd进行的详细解释,但是本人认为还不够。下面结合本人的理解来进一步阐述:

首先来引入《矩阵论》中的初等旋转矩阵和初等反射矩阵。

5.3.初等旋转矩阵

1f6656e8a0daa4e67520b6d44f041d19.png

 1a20f029c036c6b31729969084743966.png

 3cfbeeacf87db8df6eb1f182da4750b9.png

 0d7d0a382ae40beccc0bcf4efa94e1f4.png

 db8e1f1c660ea0f8e0a78d5be7ed5b95.png

 4636d9bbf7419f647d3a06f87f918206.png

 初等旋转矩阵是正交矩阵,所以对向量变换时模不变,只是旋转或者是反射。

5.4.初等反射矩阵

e0aeb8c6056adc12e25097243ead2979.png

 44b3c67c985dae6dddf0ca25d0947cfd.png

 ccfc3bdd69716fb7fe9c29c12104336a.png

 356d69c31b45ea26907c9d0d1fd0eff4.png

 dd7a35c29c568172f4578043576db996.png

 4b7c97efc7245b16a7a82d6bd14abada.png

 5.5 用矩阵的svd实现降维

关于PCA降维这里不论述了,重点谈一下利用svd降维的原理。在论述之前,先看以下svd的分解公式:

 bbda3a783fdc5b9fd46d1d780dbb49b2.png

 这个公式很好地阐释了矩阵的线性变换,先是旋转变换,然后中间是拉伸变换,最后再是旋转变换,其中u 和v都是正交矩阵。那么我们可以提取出奇异值的主要值,其余不重要的忽略掉,于是有如下的降维处理:

2627839ade709e98b7bf422abb703970.png

 5.6 PCA

前面提到了,PCA和SVD本质是一致的,PCA其实是SVD的外部封装。下面直接用最大方差投影理论推导一下PCA。

说明:样本数据矩阵,列代表特征维度,每一行代表一个数据。比如具有两个特征维度的数据集可以表示为(x,y),那么协方差矩阵就是:[cov(x,x) cov(x,y)

                   cov(y,x) cov(y,y)]

pca降维的一般步骤如下:

①数据预处理,0均值并且归一化

②构建协方差矩阵

③协方差矩阵特征值分解

④对特征值降序排列,找到对应的特征向量系

⑤预处理后的数据集向④中的特征向量系投影

下面用最大方差投影理论解释上述步骤。

构建后的协方差矩阵为n阶Hermite正定矩阵,这意味特征值分解后的特征向量系为标准正交特征向量系,也就是坐标轴。这些坐标轴两辆正交(垂直),数据集向排序后的部分坐标轴投影,这些投影后的数据具有最大的方差,其余的坐标轴舍弃之。那么投影后的方差和前面步骤中的特征值有何关联?PCA为何要先构建Hermite正定的协方差矩阵?我们从几何角度来看一下:

f57b29545bffbe0f6b881720ac0d8a28.jpeg

数据经过预处理后坐标轴是0均值单位向量。现有n个两两垂直的坐标轴,数据集分别向这些坐标轴投影,投影后的数据集仍然为0均值单位向量,那么投影后数据集的方差可以比较大小,从中选出top_r个,这top_r个方差值对应的坐标轴就是我们想要的。

比较PCA和SVD的具体实现过程确实可以肯定,两者本质是一致的。

下篇:

总述:上篇主要论述了矩阵理论的一般性,接下来将进一步深入探讨特殊矩阵以及应用。国外翻译版的《矩阵论》主要教会从业人员一种研究矩阵的方法论。纵观整个篇幅基本可以发现,研究矩阵的方法不外乎以下几种:①feature value decomposition②矩阵相似性~的研究③矩阵分块理论。对矩阵的任何研究都离不开这三种方法,比如奇异值分解,矩阵的分解实际上是相似性和分块理论的融合。矩阵中最重要的元素是feature value,它是矩阵的灵魂。以feature value为核心的研究,包括线性变换,谱范数,feature value估计,矩阵的扰动问题,稳定性等等。矩阵的范数在AI中往往应用在结构化约束中,矩阵的范数还可以证明矩阵的收敛性,最小二乘法损失函数用矩阵可以解释为估计参数满足向量Y在预测值平面内的投影是预测值向量本身。包括在《实变函数与泛函数分析》和《凸优化》中都可以用矩阵来解释,比如泛函数分析中著名的乘积空间其实可以看成是矩阵空间,有界线性算子。《矩阵论》+《实变函数与泛函数分析》+《凸优化》+《统计学》是从事研究工作最基本的数学储备。而普通本科非数学专业的微积分和线代又是前面的基础。但是理论扎实和创新并不是一回事儿,比如国外的Ai研究员可以从生活常识中得到灵感,比如幼儿的抓阄,物理学中的弹簧系统的稳定性等等。建立创新意识比知识储备更重要,也就是增强自身的认知能力,而不只是停留在感知层面。比如有的公司或者研究人员认为扒论文复现很重要,认为本科生做不了。事实上如果中国的教育有质量保证的话,本科生完全可以胜任,因为扒论文复现并不是什么高深和光彩的事儿。

学习学科的目标并不是单纯为了积累知识,方法论才是最重要的。比如国内很多研究生很水,据观察国内很多高校根本不具备开设硕士专业的资格,导师水平不达标,有的甚至不是专业对口的导师,可想而知多么坑人。方法论在知识图谱中以及神经规则推理中更为重要,比如图模型推理的研究,基本思路是融合统计学派和图模型,然后用神经网路学习知识表示。再比如CNN的改进总体离不开以下3种方法:①输入层embedding的扩展,比如融合知识图谱的embedding表示②卷积算子的改进(数学中的卷积算子的研究和有界线性算子很相似)③最后池化层的改进。去年以色列特拉维夫大学和哈弗大学的一篇改进卷积算子(谱卷积算子的论文很不错,很前沿,这些都是工业界最具价值的研究)。目前国内的研究最大的问题是"唯论文论"的浮夸,部分博士不务实,以写论文为生。工业界的进步靠的是少数有价值的论文,而不是论文漫天纷。国内的研究总体上格局不大,有点儿小家子气,保守,习惯于在1的基础上小修小改。从0到1的过程是最具价值的,也是最消耗精力的,需要从基础抓起。比如有的人研究方向很可能不对思路(纯学术派的Ai研究员容易犯这样的错误),从0到1的研究必须必须慢下来。比如很多工业界的码农学习Ai完全是蜻蜓点水,这是不恰当的,能够评估一篇论文的商业价值需要很强的学术能力和经验。再比如去年微软已经上线的core inferrence chain用cvt节点的图谱做2-hot以上的推理,metapath衡量语义相似度,论文有些人看了以后认为这仅仅是一篇paper而已,草率地认为实际上实现不了。国内确实没有上线的,这说明国内的Ai基础研究明显落后于美国。

1.特殊的矩阵

      1.1 正定矩阵与正稳定矩阵

矩阵的研究方法在总述中已经提到了,看下面的图:

d7b8c928e2e742cc72b7dbfb33be97f8.jpeg

 利用以上结论可以得出:对于n阶Hermite正定矩阵A有,其中P为n阶非奇异矩阵,证明过程用到了第②条结论。这个结论可以直接证明向量的椭圆范数满足三角性。n阶Hermite正定矩阵毫无疑问是稳定的,他是判断线性系统稳定性的重要依据(依据特征值来判断,前面提到矩阵的特征值是矩阵的灵魂)。

      1.2 投影矩阵

1.21 投影算子、投影矩阵和幂等矩阵的概念

5bb053aa31cad8350af05992b1f9fdaf.png

344d1cbb089804c275ce749e7afa430b.png

 注意:幂等矩阵是A^2=A的矩阵。

8e8285bbbd1500bd9e4bbe2554156a3f.png

ff5f2cb3f0450a5a683c8d6b345ad593.png

8efa1b78e2b1c68405a3e8008de07bc0.png

 1.22 判断投影矩阵的条件

ab2126d65714bd89ead97fbdc14d4784.png

0dcfe33a3ff742e3654ef6f6e4be17a0.png

c42a1c27bd615aa0b15137c23dd874f5.png

 1.23 投影矩阵的表示

8b735d9ab7eed4538ce3431727912c79.png

e349de318e4689096fdfdf38a81e843f.png

 举例:

cb1181f31b71590049ffdf4daa0bb497.png

354a68adcebcfcad1cb80c818dc4458e.png

 1.3 正交投影矩阵

 L子空间的向量与M子空间的向量正交,M是L的正交补。

1.31 正交投影矩阵的表示

d8dcd55c120d84d519082a5bd3c967e2.png

933b7f9c6a5a52da9c4a9bd08f3c8efe.png

0d391d96918e2f9e141866faa5048dda.png

 x在L上的投影为:

7d093fe63a13487ff47b92ead264f297.png

1.32 正交投影矩阵在图模型中的应用

前面的例子不具备很好的说明,现在来论述最速马尔可夫混合链儿问题。在这个例子中,你会很好地看到正交投影矩阵的作用,如何找到矩阵的第二大特征值。

239dabf007557240c48d68e6f971dd11.jpeg

2. 矩阵的一般相似性定理

在第一篇博客已经提到了哈密特-凯莱定理,依据是任意n阶矩阵与三角阵相似。在《线性代数》中论述的是特殊的相似性:n阶非奇异矩阵与对角阵(特征值)相似。更特殊的是n阶对称矩阵的相似性,从特殊到一般的情况是《矩阵论》区别于《线性代数》的地方之一。

二,矩阵与AI

1.最小二乘法的研究

   1.1 椭圆方程

         1.11 标准椭圆方程

               在二维平面内,一个标准的椭圆方程为x^2/a^2 + y^2/b^2 = 1,用矩阵表示为

1c9820e431174b478de0b60e83ed7e5e.png

在《线性代数》的二次型章节中,有标准的二次型矩阵表示,重新回顾一下:

3962b095d97053b8e0fefbc4c4eb2de0.png

e9727837bbbb89727bca700a586607cf.png

ce870d448457e5174889272501a6d5ef.png

bdb980af265392ce538a3aeefda7acba.png

d62121f9229f6b4113f1bc214bce8e69.png

  标准的二次型就是这样的:

50d1dceb94e05dae26768d0263ba6388.png

b17cf2a3d11cfd4d394ebfbdbf15efb7.png

7ce68ae6edf7898f7ff4e7675f71c8ce.png

 其中C是标准正交特征向量系组成的矩阵。所以以原点为中心的标准椭圆方程就是X^TAX,A为Hermite矩阵,X为椭圆参数。

那么椭圆中心不在原点的方程呢?比如

7e19cd60ebb6c7325894fae94f13a00e.png

 很明显此时的方程应该为:(X-X0)^TA(X-X0)

         1.12 旋转后的椭圆方程

                比如将原来的椭圆按原点顺时针旋转thelta度,旋转后的方程是什么样的呢?设原椭圆上的一点a(x1,x2),旋转后为a`(x1`,x2`)。旋转矩阵为1c5c21f096c816d92a21792e4f4468a8.png,标记为C,于是a` = Ca。变换一下,将a`逆时针旋转thelta度返回原来的a,此时的旋转矩阵为3c8b61d06bdff59f57d72bc8eeae440f.png,替换掉原来的C。于是a = Ca`,带入原来的椭圆方程中得到: 33dfdcca43672fbe66577b18f962ab59.png(初等旋转矩阵和初等反射矩阵在上一篇博客有论述),中心为X0(x10,x20)的椭圆方程为(X-X0)^T(C^TAC)(X-X0)。

   1.2 最小二乘法损失函数

         1.21 最小二乘法损失函数的由来

                 最小二乘法对于很多AI从业人员来说很熟悉,感觉没什么好说的,但是真要自己独立深入研究就需要功底了。运用数学知识自行研究AI需要方法论指导,首先写出最小二乘法的损失函数公式:

1517cbd4b93710af939fbb2fde77e493.png

线性回归中的样本容量为n,标记Y为真实值,维度为n,Y属于C^n空间,预测值e612a5ee16e2f291259fb6beddd28c4b.png 属于 L(L为C^n的子空间)。

在《统计学》中我们知道,对于回归问题,真实值与预测值之间的误差遵循标准高斯分布27a9b0415bb858c77590e5e467be20ad.png,他的概率密度函数为高斯分布函数,因此利用最大似然函数估计得到:

c03e35fc3b51673e9aa93d3b4096f5f0.png

让这个概率密度函数最大化等价于exp()里面的东东最小,于是就有了最小二乘法的损失函数。当然这个只是经验风险估计,还没有加上结构化约束,不能算最后的损失函数,后面将利用《凸优化》论述结构化约束。另外最小二乘法的损失函数属于凸函数,集合属于凸集,可以自己验证一下(两方面可以验证,一是变换成椭球公式,椭球属于典型的凸集,另一种方法求参数的二阶导函数>0)。

         1.22 损失函数的椭圆范数表示

63eb6e573415c9fc8c0e4eae93dc3866.png

0f539393b62ad4e822fb63a62d86f82d.png

 也就是说X*theltaY沿着M向L的投影,更确切地说是正交投影。我们来验证一下是否正确。公式Y=X*thelta+Z,按照《矩阵论》中投影的定义,Y分解为了两个子空间,这两个子空间直和是完整的C^n空间,所以X*thelta是Y的投影,符合要求。而且是正交投影,那么必有正交投影矩阵P满足以下关系:PY=X*thelta,P为Hermite幂等矩阵。那么至此最小二乘损失函数的意义就是:找到最优的参数thelta使损失函数的椭圆范数最小(最优椭圆),根据这样的参数thelta能够得到Hermite幂等矩阵P使PY=X*thelta,即X*thelta是Y沿着M(M是L的正交补)的正交投影。X*thelta是对参数thelta的线性变换,把X进行奇异值分解后降维处理或者用PCA降维,X先是对thelta旋转变换,然后伸缩变换,最后再次旋转变换,此时的参数变成了L子空间。在实际工程训练中只能逼近这个理想结论,能否达到主要取决于结构化约束和参数优化方法。于是引出1.23节的论述,请看下文:

         1.23 损失函数的结构化约束(lasso研究)

                 春节后更新……

2.矩阵不等式和分类超平面

      2.1 矩阵不等式

             从最小二乘法的研究过程中可以看出,判断是否为最小二乘的依据就是中间的特征矩阵,如果是n阶Hermite正定矩阵的话,就确定了一个椭球,属于凸集。参数优化过程是找到凸集中的最优椭球参数使损失达到极小值(不是最小值,没有最小值,后面论述区别),也就是使椭球范数局部最小化。接下来讨论对称正定矩阵。

上篇中已经提到正定矩阵的定义,正定矩阵的约束包括:①对角线元素>0②矩阵行列式>0。这里要强调的是,一个对称正定矩阵总是与椭球唯一对应。那么,现有两个点,有多个椭球过这两个点,这里面的最优椭球是哪一个?

522da2e80c9967008ef213e9d3734979.png-----------------(1)

 这涉及到了矩阵不等式,先谈一下广义不等式。

94a9c992f4bae0b9c4aea833b3e5df4f.png

 广义不等式阐述了锥集中元素的偏序或者几何上的空间位置关系,这在矩阵中体现的更明显。比如上面的y-x指向K的内部,表明用在x的右上方。来看下面的例子:

f95dd3dd0ffccf504b6c4275920b3be8.png

d3e399c468cf76e1b3411572ae109949.png

     2.2 最小与极小元

关于最小与极小元的描述不必太复杂,直接看图:

47f5abb24e2e7b6698e8f0dfc15c9a7d.png

28a1ecf55e964d0fbbce83730966e36a.png

3d2f6011ab00a43c8872382a47afbdae.png

 522da2e80c9967008ef213e9d3734979.png

 feebfbf0b97a1a2f781d1b637c3884c3.png

3. 重要的矩阵:拉普拉斯矩阵,无向图卷积算子,谱卷积算子,从无向图到有向图的推理研究

    2.1 拉普拉斯矩阵与PageRank算法

    2.2 普通卷积算子,谱卷积算子,无向图推理

          2.21 普通卷积算子

          2.22 谱卷积算子

          2.23 无向图推理

   2.3 从无向图到有向图推理
 

 

 

 

 

 

 

 

  • 35
    点赞
  • 136
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佟学强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值