AI研究方法论与问题探讨

                                                                                                                       前言

注意:本书适用于对矩阵论,凸优化,泛函数分析,统计学有良好的基础并且有一定AI实践的人,因为本书会大量引入数学,AI基础研究内容。

目前,机器学习很火热。国家打算在近几年培养大量的一线工人来制造AI产品。应用型的硕士就是其中之一,搬运工。真想搞研究的话,先做冷板凳把数学思维提升一下,打好基本功。学习任何新知识或者技术都需要方法论指导。有的人悟性高一些会把握其中的精髓,一般而言,初级人员会频繁扒别人论文,做工程,追赶新技术,搞得自己身心疲惫。精读国际顶级论文30+足矣,引用次数低于100的论文可以当做垃圾扔掉。何为精读?精读意味着不仅能够领略论文的结论是如何来的,而且能够从中得到启发,去发现发掘新的东西能够指出不足之处,指导自己的研究。如果能够意识到这一点早点儿觉醒,下决心培养自己的基础学科研究能力,这样的人还是孺子可教也的。

金庸武侠小说里经常会有功夫的总纲,比如七伤拳,九阳神功之类的。能总结归纳出总纲领的人,一定是集大成者,肯宁是在基本功上下了不少的功夫。机器学习也有总纲,本人放弃码农,最近几年研究基础学科,初有心得。总体来讲,AI有两大分支,一是以类脑学科和仿生学驱动的,另一个就是数据驱动的。前者没有系统研究过,后者是目前火热的,以神经生物学,数学,物理学,计算机基础为驱动的AI,高度依赖高质量的数据。基本上,以数据为驱动的AI,本质上就是两个任务,一个是评价体系或者规则的建立,另一个就是寻找最优的归纳偏置。从数学角度来解读,前者是凸优化的建模问题,后者是求解最优解,从机器学习专业领域来解读,前者是一个智能体系的评价准则建立,包括损失函数,结构化约束,外部知识引入,先验知识构建,后者是算法优化参数,比如遗传算法,模拟退火,最速梯度下降。具体领域会有具体的问题需要解决,比如深度学习参数优化的动态残差问题研究,先验知识比如图谱的研究,损失函数的多准则构建等等。总体来讲,以数据驱动的AI面临的问题依然和数据有关,那就是如何保证系统在数据稀缺情况下的精准度和稳定性。这是今后的重要研究方向,比如模型复杂度太高就需要海量数据来平衡,降低预测误差,数据不均衡预测时就不稳定,需要施加稳定性约束规则,数据稀缺情况下,如何降低模型对海量数据的依赖?那么融合统计学派和联结主义学派是目前的最佳解决方案。这个方案始于2015年获得成功的BiLSTM_CRF,去年6月DeepMind和谷歌大脑发布的图神经网络是集大成者,还有谱卷积算子的研究。

所以本文必然也会对数据驱动的AI做一次彻底的梳理,因此篇幅会很长,差不多一本书。但是不会有死知识的讲解,更多的是思考,引导和问题阐述,以及寻找解决方案。本书基本分为三个部分,第一部分是总纲,从数学凸优化角度论述学习机器学习的方法论,第二部分是应用和建模,用方法论指导实践,第三部分是研究与问题探讨,包括现有AI算法的一些改进想法,基础研究,图神经网络的研究。

第一部分 机器学习的两大任务

1.预备知识

英文版的凸优化前5章内容需要仔细学习研究,会花费很多精力,既可以学习英语,又可以提高数学能力。这部分并不打算罗列所有的机器学习算法,这样做的话必然会流于肤浅。因为任何AI算法都可以统一为建模和参数求解问题。建立这种思维比学习现有的算法更有效。

2.多准则评价规则

   2.1 罚函数

   2.2 多准则约束

3.寻找最优归纳偏置

 3.1 基本概念

 3.2 无约束参数优化

      3.21 梯度下降

              1.梯度下降与最速梯度下降

              2. Newton法

3.3 等式约束的参数优化

 

3.4 不等式约束参数优化

第二部 应用和建模

本部分主要把当前火热的语义相似度问题作为切入点。场景包括kb-qa,文章摘要,机器简历匹配问题。可以把本人之前的语义相似度理论篇和实践篇直接搬过来。

第三部分 研究篇

3.1、深度学习的激活函数性能对比,参数优化方法:①BP算法②激活函数③优化方法:遗传算法与模拟退火(重点大篇幅论述)

 

3.2、关于空间和时间的归纳偏置:CNN和LSTM。其中CNN包括:①数学上的卷积,卷积与傅立叶变换的关系,傅立叶变换(重点论述)②图像中的卷积③textCNN在nlp中的问题探讨,李继维博士团队的汉字语义表示改进探讨④CNN的缺陷及改进(重点论述)。LSTM部分:①从数学角度看RNN到LSTM的演化过程(重点论述)②LSTM的缺陷及改进:self_attention中的线性代数,动态残差的LSTM

 

3.3、图卷积神经网络:①为什么需要图卷积?②基础知识:拉普拉斯矩阵,傅立叶变换,pagerank算法③空间图卷积和谱图卷积(无向图和有向图推理)

 

3.4、换一个角度理解上述算法(神经规则推理):关系,实体,规则,推理算法,知识图谱向量化,神经网络和图结构的统一,总结问题

 3.5 本书最后一部分:去年IBM医疗AI项目失败的原因分析,它给了我们什么启示?模式识别和逻辑推理到底有何区别?什么样的场景下需要逻辑推理?如何让机器学会人的逻辑推理?未来AI的出路在哪里?程序员又该如何创造和管理AI?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佟学强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值