[Problem]
[Solution]
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
[Solution]
class Solution {说明:版权所有,转载请注明出处。 Coder007的博客
public:
/**
* binary search
* int cmp: -1 - search the first element equals to target
* 0 - search the element equals to target
* 1 - search the last element equals to target
*/
int binarySearch(int A[], int n, int left, int right, int target, int cmp){
int mid;
while(left <= right){
mid = left + (right-left)/2;
if(target < A[mid]){
right = mid - 1;
}
else if(target > A[mid]){
left = mid + 1;
}
else{
if(0 == cmp){
return mid;
}
else if(-1 == cmp){
if(mid == 0 || (mid > 0 && A[mid-1] != target)){
return mid;
}
else{
right = mid - 1;
}
}
else if(1 == cmp){
if(mid == n-1 || (mid < n-1 && A[mid+1] != target)){
return mid;
}
else{
left = mid + 1;
}
}
}
}
return -1;
}
vector<int> searchRange(int A[], int n, int target) {
// Note: The Solution object is instantiated only once and is reused by each test case.
// search one of the target
int pos = binarySearch(A, n, 0, n-1, target, 0);
// not exists
if(-1 == pos){
vector<int> res(2, -1);
return res;
}
// search the left bound and the right bound
int left = binarySearch(A, n, 0, pos, target, -1);
int right = binarySearch(A, n, pos, n-1, target, 1);
// set result
vector<int> res;
res.push_back(left);
res.push_back(right);
return res;
}
};