Search for a Range
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
SOLUTION 1:
使用改进的二分查找法。终止条件是:left < right - 1 这样结束的时候,会有2个值供我们判断。这样做的最大的好处是,不用处理各种越界问题。
请同学们一定要记住这个二分法模板,相当好用哦。
1. 先找左边界。当mid == target,将right移动到mid,继续查找左边界。
最后如果没有找到target,退出
2. 再找右边界。 当mid == target,将left移动到mid,继续查找左边界。
最后如果没有找到target,退出
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
if(nums.empty())
{
vector<int> resvec;
resvec.push_back(-1);
resvec.push_back(-1);
return resvec;
}
int left=0,right=nums.size()-1;
while(left<right-1)
{
int mid = (right +left) / 2;
if(nums[mid]<target) left=mid;
else right=mid;
}
int res_left;
if(nums[left]==target) res_left=left;
else if(nums[right]==target) res_left=right;
else res_left=-1;
left=0,right=nums.size()-1;
while(left<right-1)
{
int mid = (right +left) / 2;
if(nums[mid]>target) right=mid;
else left=mid;
}
int res_right;
if(nums[right]==target) res_right=right;
else if(nums[left]==target) res_right=left;
else res_right=-1;
vector<int> resvec;
resvec.push_back(res_left);
resvec.push_back(res_right);
return resvec;
}
};
注意以下疏漏:
1.函数输入nums可能为空,所以要单独考虑 if(nums.empty())
2.二分法要灵活运用,不要只局限于找一个中间值,一定要灵活运用,各种形式的二分法