雅可比迭代收敛性

clear all

A=[5 2 1; -1 4 2; 2 -3 10]

b=[-12;20;3]

% (1)

D=diag(A)

ND=sum(abs(A-diag(D)),2)

bo=D>ND

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
雅可比迭代法是一种迭代求解线性方程组的方法,其收敛性取决于系数矩阵的性质。具体而言,如果系数矩阵是严格对角占优的,则雅可比迭代法是收敛的。严格对角占优指的是矩阵的每一行(或每一列)的绝对值最大的元素都在对角线上。 下面是使用C语言实现判断收敛性的代码示例: ``` #include <stdio.h> #include <math.h> #define MAX_ITERATIONS 1000 #define EPSILON 1e-10 int main() { double A[3][3] = {{4, 1, -1}, {2, 7, 1}, {1, -3, 12}}; // 系数矩阵 double b[3] = {3, 19, 31}; // 常数项 double x[3] = {0, 0, 0}; // 初始解 double x_new[3]; int i, j, k; double sum; int is_converged = 0; for (k = 0; k < MAX_ITERATIONS; k++) { is_converged = 1; for (i = 0; i < 3; i++) { sum = 0; for (j = 0; j < 3; j++) { if (j != i) { sum += A[i][j] * x[j]; } } x_new[i] = (b[i] - sum) / A[i][i]; if (fabs(x_new[i] - x[i]) > EPSILON) { is_converged = 0; } } for (i = 0; i < 3; i++) { x[i] = x_new[i]; } if (is_converged) { printf("Converged after %d iterations\n", k + 1); break; } } if (!is_converged) { printf("Did not converge after %d iterations\n", MAX_ITERATIONS); } return 0; } ``` 在上面的代码中,我们先定义了系数矩阵、常数项和初始解,然后进行迭代求解。在每次迭代中,我们先计算出新的解,然后判断当前解和新的解之间的差距是否小于预设的阈值EPSILON,如果是则说明已经收敛,退出循环。如果迭代次数超过了预设的最大次数MAX_ITERATIONS仍然没有收敛,则说明没有收敛。 需要注意的是,这里的代码只是一个示例,具体实现可能会因为方程组的大小、系数矩阵的特殊性质等因素而有所不同。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值