Tensorflow实现Mnist和验证码识别、tensorflow中的交叉熵函数(区分多分类、多目标)

本文介绍了使用Tensorflow进行Mnist数字和验证码识别的实践,包括数据预处理、模型构建(线性+softmax、CNN)以及在多分类和多目标问题中交叉熵函数的应用,如sigmoid_cross_entropy_with_logits、softmax_cross_entropy_with_logits等。在实验中,针对数据集不足、数据格式问题和学习率调整等问题进行了讨论,展示了如何解决这些问题以提高模型准确率。
摘要由CSDN通过智能技术生成

Mnist数字识别

  • data preparation
  • 简单线性变换+softmax
  • convolutional neural network(cnn)

captcha识别

  • data processing
  • 简单线性变换+softmax
  • convolutional neural network(cnn)

tensorflow中的交叉熵函数

  • tf.nn.sigmoid_cross_entropy_with_logits
  • tf.nn.softmax_cross_entropy_with_logits
  • tf.nn.sparse_softmax_cross_entropy_with_logits
  • tf.nn.weighted_cross_entropy_with_logits

Mnist

关于Mnist数字识别在tensorflow 官网有详细的数据下载和线性+softmax、cnn识别的教程。在这里不再赘述。主要记录一下实现过程中的应该注意的几个小问题:

  1. 数据下载不完整。官网下载Mnist ,数据文件文件大小正确,解压CRC校验错误。应该是网速问题导致的。在这里因为数据不完整折腾了很久,利用一个垃圾解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值