宛如大片,你没见过的气象大数据可视化!

从哈雷的早期气象图到现代,气象数据可视化已发展到全新阶段。丰富的数据源结合Smartbi等工具提高了处理效率,实现多源资料分析。通过可视化引擎展现多样效果,交互分析深化数据理解,智能化门户提升用户体验。广东省气象业务网的应用表明,这种创新对气象信息传播具有重大意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

早在17世纪80年代,英国科学家埃德蒙·哈雷凭借大量的数据绘制了世界上第一张载有海洋盛行风分布的气象图,以地图为依托,对信风的分布状况做了全球性的统计分析,并将分布状态生动的展现在世人面前,这也是有史可依的最早的气象数据可视化案例。

349.jpg

如今,气象数据可视化已经发展到了全新的时代。气象数据信息已经实现了以地图为载体的全面可视化展示,文字描述变成了辅助信息,图形可以一目了然的传达不同地理区划内各类气候历史资料和实时的天气实况、预报数据。

我国气象部门在天气预报和自然灾害的的监测预警上,也在对气象数据可视化技术不断进行实践和探索。由广东气象局探测数据中心建设的气象业务网,在这方面就取得了很大的突破。

丰富的数据是可视化的基础

对于气象数据可视化,如果数据源不够丰富,那么可视化手段也就显得苍白无力,气象服务效果必然会大打折扣。数据可视化需要以受众的需求为出发点寻找有价值的数据源,并且以点连线、以线带面,进行多维空间的信息补充和挖掘,才能在此基础上谈及可视化表达。

而丰富的数据源,通常来自“天地空海”不同地理空间的气象观测站,数据量极其庞大,因此需要解决数据处理效率的问题。广东省气象业务网利用Smartbi来采集并处理大规模的多源数据,Smartbi充当“数据中台”的角色,很好地解决了数据处理效率的问题。

有了丰富的数据源,就可以进行多源资料分析。可随意叠加台站基本信息、实况观测、实况融合、雷达卫星、预报产品、数值预报等各类多源资料,进行任意组合分析。

如实况融合最高温度和最低温度对比分析:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值