- 博客(19)
- 收藏
- 关注
原创 Python K-均值聚类实验
利用某地2021年、2022年的3月、6月、9月、12月份的逐日平均气温T、相对湿度RH、位势高度Z850的再分析资料构建训练样本X=[T,RH,Z850]T。利用K-Means算法实现对基于这三个要素构成的特征空间的聚类分析。
2024-08-01 20:01:28 194
原创 Python气象信息可视化方法汇总
气象数据可视化是一种将气象数据通过图形、图像等视觉化手段进行呈现,以便更好地理解、分析和预测天气状况的系统。它的发展历程可以追溯到20世纪70年代,随着计算机技术和大数据处理能力的不断提升,气象数据可视化系统也得到了迅速发展,成为气象领域中不可或缺的一部分。
2024-01-19 20:17:56 4947 10
原创 气象信息可视化(四)——流场可视化实验
1.绘制某个时次的950hPa、500hPa 和 200hPa 水平风场流线图。以及平均海平面气压场数据MSLP,得到典型气压层的。2.实现一个简单的台风中心位置自动判识方法。利用ERA5再分析资料水平风速场数据。3.台风中心位置判识。4.台风移动路径绘制。
2024-01-19 19:24:02 2135 3
原创 气象信息可视化(三)——三维标量场可视化
(▲图1 (a)采样值[0,20,30,40],不透明度[0,0,1 ,0];(b)采样值[0,20,30,40],不透明度[0,0,0.5,0];(c)采样值[0,10,30,50],不透明度[0,0,1,0];(d)采样值[0,10,30,50],不透明度[0,0,0.5,0])(▲图2 将采样值设置为[0,15,20,25,30,35],不透明度设置为[0,0,1,0,1,0]时的风场结构)1.展现风速大小 30 m/s 附近的风场结构,通过调整不透明度传输函数斜率和峰值来调整风速显示范围。
2024-01-19 18:43:07 945 1
原创 气象信息可视化(二)——二维标量场可视化
利用中国东部地区地面自动站降水观测资料,通过插值得到某日降水量等经纬度网格(0.03°*0.03°)数据,并采用颜色映射、等值线进行可视化。
2023-12-15 16:04:44 290
原创 天气学原理插图复现(七)——北半球平均经圈环流
使用数据:omega.mon.ltm.1991-2020.nc、vwnd.mon.ltm.1991-2020.nc 使用库:Matplotlib、NumPy、netCDF4、Cartopy
2023-12-15 09:18:31 200
原创 天气学原理插图复现(六)——沿纬圈平均的平均纬向风速的经向剖面图
使用库:Matplotlib、NumPy、netCDF4、Cartopy 使用数据:uwnd.mon.ltm.1991-2020.nc
2023-12-15 09:02:31 462
原创 天气学原理插图复现(五)——1000hPa平均风场
使用数据:uwnd.mon.ltm.1991-2020.nc、vwnd.mon.ltm.1991-2020.nc 使用库:Matplotlib、NumPy、netCDF4、Cartopy、math
2023-12-15 08:50:46 175
原创 天气学原理插图复现(四)——平均温度场经向剖面图
使用库:Matplotlib、NumPy、netCDF4、Cartopy 使用数据:slp.mon.ltm.1991-2020.nc
2023-12-15 08:43:31 135
原创 天气学原理插图复现(三)——北半球500hPa平均西风风速分布
使用数据:uwnd.mon.ltm.1991-2020.nc、vwnd.mon.ltm.1991-2020.nc。使用库:Matplotlib、NumPy、netCDF4、Cartopy、math
2023-12-15 08:36:31 184
原创 天气学原理插图复现(二)——北半球平均500hPa高度场
使用库:Matplotlib、NumPy、netCDF4、Cartopy。使用数据:hgt.mon.ltm.1991-2020.nc。
2023-12-15 08:28:26 545
原创 天气学原理插图复现(一)——平均温度场经向剖面图
使用数据:air.mon.ltm.1991-2020.nc、pres.tropp.mon.ltm.1991-2020.nc。使用库:Matplotlib、NumPy、netCDF4、Cartopy。
2023-12-14 23:33:44 411
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人