概率论与数理统计-第3章 多维随机变量及其分布

本文详细介绍了二维随机变量的定义、分布函数、离散型与连续型随机变量的概率分布、边缘分布以及条件分布的概念。重点探讨了随机变量的独立性,包括独立性的定义、性质及独立随机变量的特征。

第3章 多维随机变量及其分布

3.1 二维随机变量及其分布

一、二维随机变量

定义1:设随机试验的样本空间为S,o∈S为样本点,而
X=X(ω),Y=Y(ω)
是定义在S上的两个随机变量,称(X,Y)为定义在S上的二维随机变量二维随机向量
一般地,称n个随机变量的整体X=(X1,X2,…,Xn)为n维随机变量n维随机向量.

二、二维随机变量的分布函数

  • 定义2:设(X,Y)是二维随机变量,对任意实数x,y,二元函数
    F(x,y)=P{(X≤x)∩(Y≤y)} =记为= P{X≤x,Y≤y} (1.1)
    称为二维随机变量(X,Y)的分布函数或称为随机变量X和Y的联合分布函数
  • 若将二维随机变量(X,Y)视为平面上随机点的坐标,则分布函数F(x,y)=P{X≤x,Y≤y}就是随机点(X,Y)落入区域{(t,s) | t≤x,s≤y }的概率
    P{x1<X≤x2,y1<Y≤y2}=F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1). (1.2)
  • FX(x)=P{X≤x}=P{X≤x,Y<+∞}=F(x,+∞),(1.3)
    FY(y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值