第3章 多维随机变量及其分布
3.1 二维随机变量及其分布
一、二维随机变量
定义1:设随机试验的样本空间为S,o∈S为样本点,而
X=X(ω),Y=Y(ω)
是定义在S上的两个随机变量,称(X,Y)为定义在S上的二维随机变量或二维随机向量,
一般地,称n个随机变量的整体X=(X1,X2,…,Xn)为n维随机变量或n维随机向量.
二、二维随机变量的分布函数
- 定义2:设(X,Y)是二维随机变量,对任意实数x,y,二元函数
F(x,y)=P{(X≤x)∩(Y≤y)} =记为= P{X≤x,Y≤y} (1.1)
称为二维随机变量(X,Y)的分布函数或称为随机变量X和Y的联合分布函数 - 若将二维随机变量(X,Y)视为平面上随机点的坐标,则分布函数F(x,y)=P{X≤x,Y≤y}就是随机点(X,Y)落入区域{(t,s) | t≤x,s≤y }的概率
P{x1<X≤x2,y1<Y≤y2}=F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1). (1.2) - FX(x)=P{X≤x}=P{X≤x,Y<+∞}=F(x,+∞),(1.3)
FY(y

本文详细介绍了二维随机变量的定义、分布函数、离散型与连续型随机变量的概率分布、边缘分布以及条件分布的概念。重点探讨了随机变量的独立性,包括独立性的定义、性质及独立随机变量的特征。
最低0.47元/天 解锁文章
9857

被折叠的 条评论
为什么被折叠?



