2021秋季《数据结构》_第六章书面作业(应用)

本文详细介绍了查找树的插入和删除操作,通过示例展示了节点序列在平衡查找树中的变化。同时,阐述了5阶B-树的插入和删除过程,以及结点频率在Huffman树中的表示和编码。此外,还探讨了Trie树的插入与删除对结构的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

B树删除150有错,懒得改了

  1. 假设结点序列 F=(60,30,90,50,120,70,40,80),试用查找树的插入算法,用 F 中的结点依次进行插入,画出每一步插入后的查找树。再用查找树的删除算法,从查找树中依次删除40,70,60,画出删除后的查找树。

    • 插入

      在这里插入图片描述

    • 删除

      在这里插入图片描述

  2. 试用 Adelson 插入方法依次把结点 50,20,10,100,120,30,110,60,70,90,80,40 插入到初始为空的平衡查找树中,使得每次插入后保持该树仍然是平衡查找树。请一次画出每次插入后形成的平衡查找树。

    在这里插入图片描述

  3. 假设给定结点序列为(200,100,250,150,120,110,220,205,210,090,160,080,170,202,225,240,245)。首先在初始时为空的 5 阶 B-树中,按上面给出的结点序列依次插入,试画出每次插入后的各棵 5 阶 B-树。然后,依次删除 202,150 和 200,试画出每次删除后的各棵 5 阶 B-树。

    • 插入

      在这里插入图片描述

    • 删除

      在这里插入图片描述

  4. 设结点 k0、k1、k2、k3、k4 的键值相对使用频率分别为 5、6、3、7、4。试画出用 Huffman算法构造出由 k0、k1、k2、k3、k4 组成的 Huffman 树,并给出这五个键值的编码。

    在这里插入图片描述

    k 0 = 00 , k 1 = 01 , k 2 = 110 , k 3 = 10 , k 4 = 111 k_0=00,k_1=01,k_2=110,k_3=10,k_4=111 k0=00,k1=01,k2=110,k3=10,k4=111

  5. 在初始为空的 trie 结构中,首先依次插入 over,overbalance,overbear 和overbearing,然后再依次删除 overbalance,overbearing 和 over。试画出每次插入和删除后的各棵 trie 树。

    • 插入

      在这里插入图片描述

    • 删除

      在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值