2021《离散数学》_等价关系和划分

等价关系和划分

等价关系和等价类

集合 X X X自反、对称且传递的关系称为 X X X上的等价关系。

R R R X X X上的等价关系, x ∈ X x\in X xX,定义 X X X的子集
[ x ] R = { y ∣ y ∈ X , 且 y R x } [x]_R=\{y|y\in X,且yRx\} [x]R={yyX,yRx}
[ x ] R [x]_R [x]R x x x(关于 R R R)的等价类 x x x为等价类 [ x ] R [x]_R [x]R的代表元。

也就是说, x ( ∈ X ) x(\in X) x(X)的等价类 [ x ] R [x]_R [x]R X X X中所有与 x x x等价的元素组成。

性质

  1. [ x ] R ≠ ∅ [x]_R\ne\empty [x]R=

  2. ( x , y ) ∈ R (x,y)\in R (x,y)R,则 [ x ] R = [ y ] R [x]_R=[y]_R [x]R=[y]R

    x , y x,y x,y同样具有关系 R R R

    • 任意等价类中的任意一个元素都可以作为该等价类的代表元
  3. ( x , y ) ∉ R (x,y)\notin R (x,y)/R,则 [ x ] R ∩ [ y ] R = ∅ [x]_R\cap [y]_R=\empty [x]R[y]R=

    • 任意两个等价类要么相等要么没有公共元素
    • 等价类是由所有那些相互等价的元素组成的,且其外的元素都不与其中的元素等价
  4. ⋃ z ∈ X [ z ] R = X \bigcup_{z\in X}[z]_R=X zX[z]R=X

证明
  1. R 自 反 ⇒ x R x ⇒ x ∈ [ x ] R R自反\Rightarrow xRx\Rightarrow x\in [x]_R RxRxx[x]R.

  2. ∀ z ∈ [ x ] R ⇒ z R x ∧ x R y ⇒ z R y ⇒ z ∈ [ y ] R \forall z\in[x]_R\Rightarrow zRx\wedge xRy\Rightarrow zRy\Rightarrow z\in[y]_R z[x]RzRxxRyzRyz[y]R,所以 [ x ] R ∈ [ y ] R [x]_R\in[y]_R [x]R[y]R​,反之同理.

  3. 利用反证法,假设 ∃ z ∈ [ x ] R ∧ [ y ] R \exist z\in[x]_R\wedge[y]_R z[x]R[y]R,则 z R x ∧ z R y ⇒ x R z ∧ z R y ⇒ x R y zRx\wedge zRy\Rightarrow xRz\wedge zRy\Rightarrow xRy zRxzRyxRzzRyxRy,与前提矛盾,假设不成立.

  4. 推导如下
    X = ⋃ { { x } ∣ x ∈ X } ⊆ ⋃ { [ x ] R ∣ x ∈ X } ⊆ ⋃ { X ∣ x ∈ X } = X \begin{aligned} X &= \bigcup\{\{x\}|x\in X\} \\ &\subseteq \bigcup\{[x]_R|x\in X\} \\ &\subseteq \bigcup\{X|x\in X\} \\ &= X \end{aligned} X={{x}xX}{[x]RxX}{XxX}=X

商集

X X X上关于 R R R的所有等价类组成的集合称为 X X X关于 R R R商集,记为 X / R X/R X/R,即
X / R = { [ x ] R ∣ x ∈ X } X/R=\{[x]_R|x\in X\} X/R={[x]RxX}

特殊的等价关系

全关系

X / E X = { { x 1 , x 2 , ⋯   , x n } } X/E_X=\{\{x_1,x_2,\cdots,x_n\}\} X/EX={{x1,x2,,xn}}

恒等关系

X / I X = { { x 1 } , { x 2 } , ⋯   , { x n } } X/I_X=\{\{x_1\},\{x_2\},\cdots,\{x_n\}\} X/IX={{x1},{x2},,{xn}}

R i j R_{ij} Rij

R i j = I X ∪ { ( x i , x j ) , ( x j , x i ) } , x i , x j ∈ X , i ≠ j R_{ij}=I_X\cup \{(x_i,x_j),(x_j,x_i)\},x_i,x_j\in X,i\neq j Rij=IX{(xi,xj),(xj,xi)},xi,xjX,i=j,则
X / R i j = X / I A ∪ { { x i , x j } } − { { x i } , { x j } } = { { x 1 } , ⋯   , { x i − 1 } , { x i + 1 } , ⋯   , { x j − 1 } , { x j + 1 } , ⋯   , { x n } , { x i , x j } } \begin{aligned} X/R_{ij} &= X/I_A\cup \{\{x_i,x_j\}\}-\{\{x_i\},\{x_j\}\} \\ &= \{\{x_1\},\cdots,\{x_{i-1}\},\{x_{i+1}\},\cdots,\{x_{j-1}\},\{x_{j+1}\},\cdots,\{x_n\},\{x_i,x_j\}\} \end{aligned} X/Rij=X/IA{{xi,xj}}{{xi},{xj}}={{x1},,{xi1},{xi+1},,{xj1},{xj+1},,{xn},{xi,xj}}
即除了 { x i , x j } \{x_i,x_j\} {xi,xj}外,其他元素只和自身为等价类

应用
由等价关系求划分块

X = { a , b , c } X=\{a,b,c\} X={a,b,c}上全体等价关系共有5种,
R 1 = I X , R 2 = E X , R 3 = I X ∪ { ( b , c ) , ( c , b ) } R 4 = I X ∪ { ( a , c ) , ( c , a ) } , R 5 = I X ∪ { ( a , b ) , ( b , a ) } R_1=I_X,R_2=E_X,R_3=I_X\cup\{(b,c),(c,b)\} \\ R_4=I_X\cup\{(a,c),(c,a)\},R_5=I_X\cup\{(a,b),(b,a)\} R1=IX,R2=EX,R3=IX{(b,c),(c,b)}R4=IX{(a,c),(c,a)},R5=IX{(a,b),(b,a)}
相应导出的商集
X / R 1 = { { a } , { b } , { c } } , X / R 2 = { { a , b , c } } , X / R 3 = { { a } , { b , c } } X / R 4 = { { a , c } , { b } } , X / R 5 = { { a , b } , { c } } X/R_1=\{\{a\},\{b\},\{c\}\},X/R_2=\{\{a,b,c\}\},X/R_3=\{\{a\},\{b,c\}\} \\ X/R_4=\{\{a,c\},\{b\}\},X/R_5=\{\{a,b\},\{c\}\} X/R1={{a},{b},{c}},X/R2={{a,b,c}},X/R3={{a},{b,c}}X/R4={{a,c},{b}},X/R5={{a,b},{c}}

空关系不是 X X X上的等价关系(非自反)

划分

π \pi π是集合 X X X非空子集的集合( π ⊆ P ( X ) \pi\subseteq P(X) πP(X) ),满足

  1. ∀ A , B ∈ π , A = B 或 A ∩ B = ∅ \forall A,B\in \pi,A=B或A\cap B=\empty A,Bπ,A=BAB=

  2. ⋃ A ∈ π A = X \bigcup_{A\in\pi} A=X AπA=X

则称 π \pi π X X X划分 π \pi π中的元素称为该划分的划分块

划分和等价关系

等价关系和划分可以相互导出。

性质
  1. R R R X X X上的等价关系,那么商集 X / R X/R X/R X X X的划分

    记由 R R R导出的划分 X / R X/R X/R π R \pi_R πR

  2. π \pi π是集合 X X X的划分,则关系
    R = { ( x , y ) ∣ x , y 同 属 于 π 的 一 个 划 分 块 } R=\{(x,y)|x,y同属于\pi的一个划分块\} R={(x,y)x,yπ}
    R R R X X X上的等价关系。

    这样导出的 R R R记为 R π R_{\pi} Rπ

推论

R = R π R , π = π R π R=R_{\pi_R},\quad \pi=\pi_{R_{\pi}} R=RπR,π=πRπ

所以本质上,等价关系和划分描述的是同一件事情的两个方面。

证明

π R = X / R ; R π R = { ( x , y ) ∣ x , y ∈ [ u ] R } ⇒ ( x , y ) ∈ R \pi_R=X/R;R_{\pi_R}=\{(x,y)|x,y\in[u]_R\}\Rightarrow (x,y)\in R πR=X/R;RπR={(x,y)x,y[u]R}(x,y)R

由划分求等价关系

沿用[应用](# 应用)的例子,先求出划分,再还原等价关系。

  • 30
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值