题目
“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图所示。
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
思路
方法一
最短路径,路径<=6就行
方法二
bfs
代码
方法一
#include<bits/stdc++.h>
using namespace std;
#define MAXN 10001
#define INF 999999
int path[MAXN][MAXN];
// floyd
int main()
{
int n, m; cin >> n >> m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
path[i][j] = INF;
}
for (int i = 0; i < m; i++)
{
int x, y; cin >> x >> y;
path[x][y] = 1;
path[y][x] = 1;
}
for (int k = 1; k <= n; k++) // 中转点
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (path[i][k] + path[k][j] < path[i][j])
path[i][j] = path[i][k] + path[k][j];
}
}
}
for (int i = 1; i <= n; i++)
{
int res = 0;
for (int j = 1; j <= n; j++)
{
if (path[i][j] <= 6)
res++;
}
cout.setf(ios::fixed);
cout << i << ':' << ' ' << setprecision(2) << (float)res / (float)n * 100 << '%' << endl;
}
return 0;
}
方法二
#include<bits/stdc++.h>
using namespace std;
#define MAXN 10001
#define INF 999999
int path[MAXN][MAXN];
int n, m;
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
path[i][j] = INF;
}
for (int i = 0; i < m; i++)
{
int x, y; cin >> x >> y;
path[x][y] = 1;
path[y][x] = 1;
}
// 对每个点bfs
for (int i = 1; i <= n; i++)
{
int* q = new int[n + 1];
int* depth = new int[n + 1]; // 记录距离
memset(depth, INF, sizeof(int) * (n + 1));
int* book = new int[n + 1];
memset(book, 0, sizeof(int) * (n + 1));
int head = 1, tail = 2;
q[head] = i;
book[i] = 1;
depth[i] = 0;
while (head<tail)
{
int tmp = q[head];
for (int j = 1; j <= n; j++)
{
if (path[tmp][j]==1 && !book[j])
{
q[tail] = j;
book[j] = 1;
depth[j] = depth[tmp] + 1;
tail++;
}
}
head++;
}
int res = 0;
for (int j = 1; j <= n; j++)
{
if (depth[j] <= 6)
res++;
}
cout.setf(ios::fixed);
cout << i << ':' << ' ' << setprecision(2) << (float)res / (float)n * 100 << '%' << endl;
// 计算res
// 清空book
delete []q;
delete []depth;
delete []book;
}
return 0;
}