2021秋季《数据结构》_EOJ 1091.六度空间

本文介绍了如何使用编程方法验证六度空间理论,通过最短路径和BFS算法计算社交网络中符合理论的节点比例。通过实例展示了如何在给定社交网络图中计算符合六度分隔的节点百分比,展示了信息技术在社会学研究中的应用。
摘要由CSDN通过智能技术生成

题目

“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图所示。

“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
在这里插入图片描述
在这里插入图片描述

思路

方法一

最短路径,路径<=6就行

方法二

bfs

代码

方法一

#include<bits/stdc++.h>
using namespace std;
#define MAXN 10001
#define INF 999999
int path[MAXN][MAXN];

// floyd
int main()
{
	int n, m; cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
			path[i][j] = INF;
	}
	for (int i = 0; i < m; i++)
	{
		int x, y; cin >> x >> y;
		path[x][y] = 1;
		path[y][x] = 1;
	}
	for (int k = 1; k <= n; k++)  // 中转点
	{
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
			{
				if (path[i][k] + path[k][j] < path[i][j])
					path[i][j] = path[i][k] + path[k][j];
			}
		}
	}
	for (int i = 1; i <= n; i++)
	{
		int res = 0;
		for (int j = 1; j <= n; j++)
		{
			if (path[i][j] <= 6)
				res++;
		}
		cout.setf(ios::fixed);
		cout << i << ':' << ' ' << setprecision(2) << (float)res / (float)n * 100 << '%' << endl;
	}
	return 0;
}

方法二

#include<bits/stdc++.h>
using namespace std;
#define MAXN 10001
#define INF 999999
int path[MAXN][MAXN];


int n, m;

int main()
{
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
			path[i][j] = INF;
	}
	for (int i = 0; i < m; i++)
	{
		int x, y; cin >> x >> y;
		path[x][y] = 1;
		path[y][x] = 1;
	}

	// 对每个点bfs
	for (int i = 1; i <= n; i++)
	{
		int* q = new int[n + 1];
		int* depth = new int[n + 1];  // 记录距离
		memset(depth, INF, sizeof(int) * (n + 1));
		int* book = new int[n + 1];
		memset(book, 0, sizeof(int) * (n + 1));
		int head = 1, tail = 2;
		q[head] = i;
		book[i] = 1;
		depth[i] = 0;
		while (head<tail)
		{
			int tmp = q[head];
			for (int j = 1; j <= n; j++)
			{
				if (path[tmp][j]==1 && !book[j])
				{
					q[tail] = j;
					book[j] = 1;
					depth[j] = depth[tmp] + 1;
					tail++;
				}
			}
			head++;
		}
		int res = 0;
		for (int j = 1; j <= n; j++)
		{
			if (depth[j] <= 6)
				res++;
		}
		cout.setf(ios::fixed);
		cout << i << ':' << ' ' << setprecision(2) << (float)res / (float)n * 100 << '%' << endl;


		// 计算res
		// 清空book
		delete []q;
		delete []depth;
		delete []book;
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值