题目
思路
动态规划。
相当于构建一棵树,以坐标为节点,以在路径中的出现先后为层号,只不过树的根节点(起点)可能有多个坐标。题设即找最短权值路径,考虑使用动态规划。对每个坐标计算从起点到该坐标的最小代价,状态转移方程为
c
o
s
t
(
c
u
r
O
r
d
)
=
min
(
c
o
s
t
(
f
a
t
h
e
r
O
r
d
)
+
c
a
l
c
u
l
a
t
e
C
o
s
t
(
c
u
r
O
r
d
,
c
u
r
F
a
t
h
e
r
)
)
cost(curOrd)=\min(cost(fatherOrd)+calculateCost(curOrd,curFather))
cost(curOrd)=min(cost(fatherOrd)+calculateCost(curOrd,curFather))
代码
#include <bits/stdc++.h>
using namespace std;
#define MAXN 100
#define MAXM 100
#define INF 0x3ffff
char graph[MAXN][MAXM];
// 每个点对应的坐标
map<char,vector<pair<int,int>>> pointToOrd;
// 每个坐标对应的从起点到该坐标的最小代价
// 对于每个坐标,最小代价计算公式为min(cost(父坐标)+calculateCost(该点坐标,父坐标))
map<pair<int,int>,int> ordToCost;
int n,m,k;
string path;
int minCost=INF;
// 计算两坐标间的曼哈顿距离
int calculateCost(pair<int,int> a, pair<int,int> b)
{
return abs(a.first-b.first)+abs(a.second-b.second);
}
// n:当前已搜索到0~t-1
void searchPath(int t)
{
// 找到一条合法路径
if(t==k-1)
{
return;
}
char cur=path[t];
char next=path[t+1];
// 对起点预处理,到起点的代价是0
if(t==0)
{
for(auto i:pointToOrd[cur])
{
ordToCost[i]=0;
}
}
for(auto itemNext:pointToOrd[next])
{
int iCost=INF;
for(auto itemCur:pointToOrd[cur])
{
iCost=min(iCost,ordToCost[itemCur]+calculateCost(itemNext,itemCur));
}
ordToCost[itemNext]=iCost;
}
return searchPath(t+1);
}
int main()
{
cin>>n>>m>>k;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
char tmp;cin>>tmp;
graph[i][j]=tmp;
pair<int,int> tmpOrd(i,j);
pointToOrd[tmp].push_back(tmpOrd);
}
}
cin>>path;
searchPath(0);
for(auto item:pointToOrd[path[k-1]])
{
minCost=min(ordToCost[item],minCost);
// cout<<ordToCost[item]<<endl;
}
cout<<minCost<<endl;
return 0;
}