短文对话的神经反应机 -- Neural Responding Machine for Short-Text Conversation学习笔记

  最近学习了一篇ACL会议上的文章,讲的是做一个短文对话的神经反映机,

  原文:

  会议:ACL(2015)

  文章条目:    Lifeng Shang, Zhengdong Lu, Hang Li:

  Neural Responding Machine for Short-Text Conversation. 1577-1586

  写下学习笔记:

  拓展:Attention Model 注意力模型,本文中提到所采用的Encoder-Decoder框架。

  

  可以把它看作适合处理由一个句子(或篇章)生成另外一个句子(或篇章)的通用处理模型。

  

  X表示输出的句子,Y表示输出的句子。

  Encoder对输入句子进行编码,转化成中间语义表示

  Decoder对中间语义及已经生成的历史信息y1,y2,…生成i时刻要生成的单词yi

,很多个yi串起来就形成了Y,即输出的句子。

  其中编码和解码都有很多可用的神经网络模型,如CNN/RNN/LSTM/深度LSTM等等,有很多种组合可以尝试。在文本处理中比较常见的Endocer和Decoder都采用RNN模型。

  而本文也采用了seq2seq(Sequence to Sequence)模型,该模型可以运用在很多地方,比如说文章自动摘要、机器翻译、人机对话等等。(其实就是一个Encoder和Decoder模型,然后Encoder和Decoder用的都是RNN中的GRU网络)。因此本文中的Encoder-Decoder模型本质上来说应该是这样的:

  

  Short-Text Conversation(STC)指的是单轮对话任务——也就是对于每一个输入post给出一个对应的response。以往的STC方法主要有两种:检索式的方法(retrieval-based method)和统计机器翻译(statistical machine learning, SMT)。但是检索式的事先都固定好了,太缺乏多样性,而统计机器翻译将它作为一个翻译任务,而有时候post和respond是完全没有一点语义关系的。

  本文采取通用的Encoder-Decoder模型,同时利用了seq2seq模型,在编码和解码的过程中都用的是循环神经网络CNN中的GRU(没有用LSTM是因为LSTM的参数太多,用GRU相对简单一些并且效果还不错),并设计了一个基于神经网络的短文对话响应机NRM(相当于机器对话),训练数据是通过微博收集的大量一轮的对话。

  首先获取数据,遵从经典的步骤,首先是删除无意义词如”wow”;筛除广告;只留前30个人的回复。

  接下来转化的模型:

  

  主要是这个L很重要,要能够表示输入句子的特性,这里要用到注意力模型确定h中的哪一步分需要着重考虑。由输入数据和y1,y2,…yi-1决定。

  解码用到下面的模型:

  

  虚线代表 g(.) ,实线代表 f(.)

   

  编码方案提出了三种:

  global scheme(NRM-glo):

 

 简单定义       hT 为Ct

  local scheme(NRM-loc):

  

    这里用到了注意力模型(AM模型),动态决定
 ,而

  hybrid scheme combines the aforementioned 2(NRM-hyb):

  第一种全局的方法能抓住post的全局特征,而第二种局部的方法能倚靠AM模型选择不同位置的单词作为重要特征,因此第三种方法可以混合一下前两种方法。模型如下:

  

  实验证明检索式的方法效果和NRM-glo差不多,因为它基本使用的都是预定义的responses,不会有一些语法上的问题,同时匹配特征保证了responses和post的相关性,

因此从表面上看来这是最合适的回答,但是实际上它只是重复了post说的内容而已,而NRM-hyb结合了global和local的优点之后,performance明显好于其他方法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值