将递归引入数列并尝试探索素数

最近在研究算法,经常接触数学,学习过程中偶然产生了把递归引入数列的想法。
尝试探索了一下得出此文。

命题(1)

对于任意一个数列{ a n a_{n} an},如果{ a n a_{n} an}的通项式存在,
则一定存在另一个数列{ b n b_{n} bn}的通项式使得等式
a n = b n ⋅ n + C a_{n} =b_{n} \cdot n+C an=bnn+C
成立。其中 n n n为数列序数, C C C为一个常数。

证明

设{ a n a_{n} an}为任意一个数列, C C C为一个常数, n n n为数列序数。
设另一个数列{ b n b_{n} bn}的通项式为 b n = a n − C n b_{n}=\frac{a_{n}-C}{n} bn=nanC
由数列序数性质可知 n n n为大于0的自然数,
又因为 C C C为一个常数,
所以如果{ a n a_{n} an}的通项式存在,则{ b n b_{n} bn}的通项式也一定存在。
b n = a n − C n b_{n}=\frac{a_{n}-C}{n} bn=nanC代入等式 a n = b n ⋅ n + C a_{n} =b_{n} \cdot n+C an=bnn+C右边,
a n = a n − C n ⋅ n + C = a n a_{n}=\frac{a_{n}-C}{n} \cdot n+C=a_{n} an=nanCn+C=an
显然成立。
得出结论(1):命题(1)为真命题。

上面的证明是不是感觉很无聊,像在说废话 ╯▽╰
说人话就是一个数列不光可以用自己的通项式来表达,还可以用另一个数列的通项式乘以 n n n再加个常数 C C C来表达。
为了方便使用,下面起了一些名字。
起这些名字的想法是通过下面一串等式来的:
a n a_{n} an
= ( b n ) ⋅ n + C b =(b_{n}) \cdot n+C_{b} =(bn)n+Cb
= ( ( c n ) ⋅ n + C c ) ⋅ n + C b =((c_{n}) \cdot n+C_{c}) \cdot n+C_{b} =((cn)n+Cc)n+Cb
= ( ( ( d n ) ⋅ n + C d ) ⋅ n + C c ) ⋅ n + C b =(((d_{n}) \cdot n+C_{d}) \cdot n+C_{c}) \cdot n+C_{b} =(((dn)n+Cd)n+Cc)n+Cb
= ( ( ( ( e n ) ⋅ n + C e ) ⋅ n + C d ) ⋅ n + C c ) ⋅ n + C b =((((e_{n}) \cdot n+C_{e}) \cdot n+C_{d}) \cdot n+C_{c}) \cdot n+C_{b} =((((en)n+Ce)n+Cd)n+Cc)n+Cb
。。。

定义

对于2个给定的数列{ a n a_{n} an}和{ b n b_{n} bn},
若它们的通项式都存在,
且使等式 a n = b n ⋅ n + C a_{n} =b_{n} \cdot n+C an=bnn+C成立,
其中 n n n为数列序数, C C C为一个常数,
则称 b n ⋅ n + C b_{n} \cdot n+C bnn+C为数列{ a n a_{n} an}的一阶递归式,
b n b_{n} bn为数列{ a n a_{n} an}的一阶递归通项,
C C C为数列{ a n a_{n} an}的一阶递归常数,
称数列{ b n b_{n} bn}为数列{ a n a_{n} an}的一阶递归数列。

已经有通项式了还要递归式干嘛呢 ⊙_⊙
多少还是有些不一样的。
起码它把数列拆解成了可变与不可变两部分。
b n ⋅ n b_{n} \cdot n bnn这一部分随序数而变化,而 C C C是常数不会有变化。
下面就用它来试着做点什么(ง •_•)ง

尝试探索素数数列

假设(1):素数数列{ a n a_{n} an}通项式存在,
由结论(1)可知存在另一个数列{ b n b_{n} bn}的通项式使得等式 a n = b n ⋅ n + C a_{n}=b_{n} \cdot n+C an=bnn+C成立,
其中 n n n为数列序数, C C C为一个常数。
可知 b n ⋅ n + C b_{n} \cdot n+C bnn+C即为素数数列{ a n a_{n} an}的一阶递归式。

  • 假设(1.1): C = 0 C=0 C=0,则得到 b n ⋅ n = a n b_{n} \cdot n=a_{n} bnn=an
  • 此处假设的编号1.1表示该假设建立在假设(1)基础上,下面依此类推

    • 由数列序数性质和素数性质可得结论(1.1.1):数列{ b n b_{n} bn}除第一项为整数2以外,其他项都为分数。
    • 此处结论的编号1.1.1表示该结论建立在假设(1.1)基础上,下面依此类推

  • 假设(1.2):数列{ b n b_{n} bn}每一项均为整数,则结合结论(1.1.1)可得 C ≠ 0 C\neq 0 C=0,且显见 C C C为整数。
  • 结论(1.1.1)是说如果 C = 0 C=0 C=0,数列{ b n b_{n} bn}除第一项外各项都必须是分数。
    所以假设 b n b_{n} bn为整数的话, C C C就一定不能是0了。
    再看一眼 b n ⋅ n + C b_{n} \cdot n+C bnn+C,明显 b n b_{n} bn是整数的话C也必须是整数,
    不然怎么得出素数来呢 ˋ▽ˊ

    • c = ∣ C ∣ c=\left| C\right| c=C,可知 c c c为自然数,且 c > 0 c>0 c>0
    • n = c n=c n=c时, b c ⋅ c + C = a c b_{c} \cdot c+C=a_{c} bcc+C=ac
    • c = ∣ C ∣ c=\left| C\right| c=C代入,得到 a c = C ⋅ ( 1 ± b c ) a_{c}=C\cdot(1\pm b_{c}) ac=C(1±bc)
    • 由素数及其数列的性质可推出: C = ± 1 C=\pm 1 C=±1
    • 这里取了素数数列的第 c c c a c a_{c} ac
      素数数列每一项的数值都大于其序数,如2>1,3>2,5>3。。。
      所以 a c > c ≥ C a_{c}>c\geq C ac>cC
      又因为 C C C ( 1 ± b c ) (1\pm b_{c}) (1±bc)都是整数,
      所以由素数性质可知 C = ± 1 C=\pm 1 C=±1

    • n = 7 n=7 n=7时, b 7 ⋅ 7 ± 1 = 17 b_{7} \cdot 7\pm 1=17 b77±1=17
    • 与假设(1.2)产生矛盾,得出结论(1.2.1):假设(1.2)不成立。
    • 昨天推到 C = ± 1 C=\pm 1 C=±1就结束了。
      晚上睡觉躺在床上想这个结论,
      突然发现这不等于说任意一个素数 ± 1 \pm 1 ±1后就能被它的序数整除吗?
      赶紧起来验证。结果取第7个素数是17,发现了矛盾。

总结

结论(1.2.1)的意思是如果素数数列通项式存在,那么它的一阶递归数列不可能是一个整数数列。
后来发现可以再推进一小步,得出一个不依赖假设素数数列通项式存在的结论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值