Here are some first-order suggestions:

These suggestions take the important case into account where we might use models that predict probabilities, but require crisp class labels. This is an important class of problems that allow the operator or implementor to choose the threshold to trade-off misclassification errors. In this scenario, error metrics are required that consider all reasonable thresholds, hence the use of the area under curve metrics.
We can transform these suggestions into a helpful template.

How to Choose a Metric for Imbalanced Classification
A Review of Machine Learning Techniques inImbalanced Data and Future Trends
https://www.kaggle.com/code/marcinrutecki/best-techniques-and-metrics-for-imbalanced-dataset
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
Facing Imbalanced DataRecommendations for the Use of Performance Metrics
1320

被折叠的 条评论
为什么被折叠?



