非均衡数据集下的分类指标指导

Here are some first-order suggestions:

在这里插入图片描述

These suggestions take the important case into account where we might use models that predict probabilities, but require crisp class labels. This is an important class of problems that allow the operator or implementor to choose the threshold to trade-off misclassification errors. In this scenario, error metrics are required that consider all reasonable thresholds, hence the use of the area under curve metrics.

We can transform these suggestions into a helpful template.
在这里插入图片描述

How to Choose a Metric for Imbalanced Classification

A Review of Machine Learning Techniques inImbalanced Data and Future Trends

https://www.kaggle.com/code/marcinrutecki/best-techniques-and-metrics-for-imbalanced-dataset
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/

Facing Imbalanced DataRecommendations for the Use of Performance Metrics

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值