Knewton的个性化学习框架

读相关文献后备忘所用


[他自己说他是对于教育这块最强的推荐引擎哦]

我只能说拭目以待!而且,把国人的学习数据给外国企业研究,咱们怎么可能放心!这种技术咱们国家的企业也得自己掌握才是,哪愿意受制于人!也希望咱们国家做在线教育的企业能快速的崛起,赶超外国做在线教育的企业。


首先,我们怎么定义个性化学习?

1.评估学生知识状态,在合适的时机推荐相关的学习资料和指导意见。
2.使用适量的题目测试学生的知识状态。

Knewton在这种慨念上加上了实时性,希望可以实时的诊断学习的知识状态,然后提供最优的学习规划及学习资料,以达到最大化学生的学习收益。

Knewton 推荐系统的理论&技术

  • Item Response Theory(IRT)
    心理学领域提出的模型,将其应用在学生的能力诊断上,以区别出学生在考出相同分数的时候,也能以能力区别出两个学生。
    这里写图片描述
  • Probabilistic Graphical Models (PGMs)
    这块主要使用统计方法,比如贝叶斯网络,马尔科夫随机场等,PGMs也赋予了Knewton可以复杂模型的能力,其中的一种用途是评估了学生知识掌握程度之后,规划出学生下一步的学习内容。
    这里写图片描述
  • Hierarchical agglomerative clustering
    根据学生掌握知识的程度将学生进行分组。
    这里写图片描述

加强Knewton推荐引擎的方式


  • Knowledge Graph

提供跨学科的知识图谱
提供跨学科的学习路径推荐。
这里写图片描述

  • Continuous, as opposed to single-point adaptivity
    提供实时的个性化推荐信息,比如一个学生在回答纠结的某个问题时,系统就知道了这个学生的知识弱点,然后就可以实时的推荐相关的学习资料。摆脱了需要学生回答相关测试题之后,才能推荐相关学习资料的固有缺陷。
  • Spaced reinforcement
    在学习新知识的一段时间里,会带上原来学习过的之后,以这种方式来加强掌握知识的强度。
  • Retention & learning curves
    使用艾宾浩斯记忆曲线来估计学生掌握了相关知识的遗忘程度。
    这里写图片描述
  • Students learning profile
    建立学生学习知识的档案
  • Network effects
    使用该系统的人数越多,学生数据越多,预测学生知识水平就越加的精确。
  • Big data & adaptive infrastructure
    • AltNode
      大数据平台,支撑起大量数据的实时分析计算任务。

参考:

一、国外研究现状** 1. **自适应学习系统的技术突破**      国外较早探索智能教育系统,典型案例包括:      - **Knewton**(美国):基于大数据和机器学习,通过分析学生答题行为动态调整学习路径,但其依赖传统算法,缺乏大模型支持的深语义理解能力。      - **Carnegie Learning**:结合认知科学与数学辅导,利用早期AI技术生成个性化习题,但学科覆盖单一,未实现多学科整合。      **意义**:验证了数据驱动和个性化反馈的有效性,为本研究利用大模型提升语义理解和跨学科能力提供参考。   2. **大语言模型的教育应用**      近年来,大模型技术推动智能辅导系统升级:      - **OpenAI 的 GPT 系列**:GPT-3/4 被用于开发对话式辅导工具(如 Khan Academy 的 Khanmigo),支持多学科答疑,但存在生成内容准确性不足的问题。      - **Google 的 PaLM**:在数学解题任务中展现强推理能力,但未深入结合教育场景的互动需求。      **意义**:证明大模型在多学科知识整合上的潜力,提示本研究需优化内容准确性和教育适配性。   3. **多学科融合实践**      - **Duolingo**(语言学习):通过AI实现语音评测和语法纠错,但其单学科模式难以扩展到其他领域。      - **Wolfram Alpha**:基于知识引擎解决数学、物理等学科问题,但交互形式局限于“输入-输出”,缺乏教学引导逻辑。      **意义**:揭示了多学科系统需平衡知识广与教学深的挑战,为本研究设计统一框架提供方向。 将上述内容转化下述类似格式国外关于…的研究源于什么提出的什么发展思想,自什么以来什么发展问题开始备受国际学界的高关注和重视,成为诸多学者关注的热点取得了较多的研究成果,这些成果…
最新发布
03-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值