Relation-aware Graph Attention Model With Adaptive Self-adversarial Training
相关基础知识
什么是异构图?
传统的同构图(Homogeneous Graph)数据中只存在一种节点和边,而异构图(Heterogeneous Graph)中可以存在不只一种节点和边。
异构图的关系预测问题
对于两个包含多种属性的实体(entity),预测他们之间的关系类型(relation)。在异构图中,实体对应节点,关系对应两个节点之间的边,即预测两个节点之间边的类型(两个节点之间可以有多条边)。
Motivation
- 传统方法利用知识图谱嵌入(KGE)方法解决异构图的关系预测问题,或者虽然采用了GNN,但在信息传递时忽略了边的语义信息,学习到的特征表示不够理想,从而导致结果不够准确。
- 大部分图表示学习方法都可以统一在一个采样噪声对比估计框架中。随机负采样虽然简单有效,但由于大部分负样本很容易被区分出,所以有梯度消失的问题。许多基于GAN的采样方法可解决这个问题,其中的generator作为负样本采样器,识别出更加discriminative的关系,以供discriminator学习。然而,GAN的问题是需要更多的参数,并且难以训练。
Contribution
- 提出了RelGNN,一种用于异构图的基于信息传递的图注意力网络,通过加入边的语义信息,增强了图的表达能力。
- 提出了ASA,一种无参数的负采样方法,可以识别出难负样本,同时降低假负样本率。
- 在多个benchmark和工业数据集上的实验结果显示,在关系预测问题中,使用RelGNN和ASA采样比STOA方法效果更胜一筹。
Problem Definition
一个异构图可表示为 G = ( V , E , A , R , ϕ ) G=(V,E,A,R,\phi) G=(V,E,A,R,ϕ)
V = { v 1 , ⋯ , v n } V=\left\{v_1,\cdots,v_n\right\} V={
v1,⋯,vn}代表图中的节点集合
A = { a 1 , … , a k } A=\left\{a_1,\dots,a_k\right\} A={
a1,…,ak}代表节点的属性模式,每个节点 v i v_i vi的节点类型为 ϕ ( v i ) \phi(v_i) ϕ(vi),其关联的属性模式为 A ϕ ( v i ) A_{\phi(v_i)} Aϕ(vi)为 A A A的一个子模式,即 A ϕ ( v i ) ∈ A A_{\phi(v_i)}\in A Aϕ(vi)∈A
E = { e 1 , … , e m } E=\left\{e_1,\dots,e_m\right\} E={
e1,…,em}为一个无向边集合, R R R为边的类型集合
每条边 e k = ( v i , r i , v j ) e_k=(v_i,r_i,v_j) ek=(vi,ri,vj)表示 v i v_i vi和 v j v_j vj之间的关系, r i ∈ R r_i\in R ri∈R
此外,每对节点之间可以包含多个关系(多条边)
Method
GelGNN
如下图所示,GelGNN包含四个部分。
Attribute Embedding
首先将节点的各个属性各自编码成向量,最终拼接在一起,再经过一个全连接层得到该节点的属性embedding向量。
Message passing
通过self-attention机制将节点属性embedding和节点图embedding组合在一起得到最终的实体embedding。
对于节点 v i v_i vi,定义其在图中的传播函数为:
h v i ( t ) = σ ( ∑ r ∈ R ∑ v j ∈ N v i r α ( v i , v j ) W r t − 1 h v j ( t − 1 ) + W s e l f t − 1 h v i ( t − 1 ) ) h_{v_i}^{(t)}=\sigma(\sum_{r\in R}\sum_{v_j\in N_{v_i}^r}\alpha_{(v_i,v_j)}W_r^{t-1}h_{v_j}^{(t-1)}+W_{self}^{t-1}h_{v_i}^{(t-1)}) hvi

最低0.47元/天 解锁文章
6001

被折叠的 条评论
为什么被折叠?



