Relation-aware Graph Attention Model With Adaptive Self-adversarial Training论文笔记

Relation-aware Graph Attention Model With Adaptive Self-adversarial Training

相关基础知识

什么是异构图?

传统的同构图(Homogeneous Graph)数据中只存在一种节点和边,而异构图(Heterogeneous Graph)中可以存在不只一种节点和边。

异构图的关系预测问题

对于两个包含多种属性的实体(entity),预测他们之间的关系类型(relation)。在异构图中,实体对应节点,关系对应两个节点之间的边,即预测两个节点之间边的类型(两个节点之间可以有多条边)。

Motivation

  • 传统方法利用知识图谱嵌入(KGE)方法解决异构图的关系预测问题,或者虽然采用了GNN,但在信息传递时忽略了边的语义信息,学习到的特征表示不够理想,从而导致结果不够准确。
  • 大部分图表示学习方法都可以统一在一个采样噪声对比估计框架中。随机负采样虽然简单有效,但由于大部分负样本很容易被区分出,所以有梯度消失的问题。许多基于GAN的采样方法可解决这个问题,其中的generator作为负样本采样器,识别出更加discriminative的关系,以供discriminator学习。然而,GAN的问题是需要更多的参数,并且难以训练。

Contribution

  • 提出了RelGNN,一种用于异构图的基于信息传递的图注意力网络,通过加入边的语义信息,增强了图的表达能力。
  • 提出了ASA,一种无参数的负采样方法,可以识别出难负样本,同时降低假负样本率。
  • 在多个benchmark和工业数据集上的实验结果显示,在关系预测问题中,使用RelGNN和ASA采样比STOA方法效果更胜一筹。

Problem Definition

一个异构图可表示为 G = ( V , E , A , R , ϕ ) G=(V,E,A,R,\phi) G=(V,E,A,R,ϕ)
V = { v 1 , ⋯   , v n } V=\left\{v_1,\cdots,v_n\right\} V={v1,,vn}代表图中的节点集合
A = { a 1 , … , a k } A=\left\{a_1,\dots,a_k\right\} A={a1,,ak}代表节点的属性模式,每个节点 v i v_i vi的节点类型为 ϕ ( v i ) \phi(v_i) ϕ(vi),其关联的属性模式为 A ϕ ( v i ) A_{\phi(v_i)} Aϕ(vi) A A A的一个子模式,即 A ϕ ( v i ) ∈ A A_{\phi(v_i)}\in A Aϕ(vi)A
E = { e 1 , … , e m } E=\left\{e_1,\dots,e_m\right\} E={e1,,em}为一个无向边集合, R R R为边的类型集合
每条边 e k = ( v i , r i , v j ) e_k=(v_i,r_i,v_j) ek=(vi,ri,vj)表示 v i v_i vi v j v_j vj之间的关系, r i ∈ R r_i\in R riR
此外,每对节点之间可以包含多个关系(多条边)

Method

GelGNN

如下图所示,GelGNN包含四个部分。在这里插入图片描述

Attribute Embedding

首先将节点的各个属性各自编码成向量,最终拼接在一起,再经过一个全连接层得到该节点的属性embedding向量。

Message passing

通过self-attention机制将节点属性embedding和节点图embedding组合在一起得到最终的实体embedding。

对于节点 v i v_i vi,定义其在图中的传播函数为:

h v i ( t ) = σ ( ∑ r ∈ R ∑ v j ∈ N v i r α ( v i , v j ) W r t − 1 h v j ( t − 1 ) + W s e l f t − 1 h v i ( t − 1 ) ) h_{v_i}^{(t)}=\sigma(\sum_{r\in R}\sum_{v_j\in N_{v_i}^r}\alpha_{(v_i,v_j)}W_r^{t-1}h_{v_j}^{(t-1)}+W_{self}^{t-1}h_{v_i}^{(t-1)}) hvi(t)=σ(rRvjNvirα(vi,vj)Wrt1hvj(t1)+Wselft1hvi(t1))

其中 σ \sigma σ为一个激活函数, N v i r N_{v_i}^r Nvir表示与顶点 v i v_i vi包含关系 r ∈ R r\in R rR的邻接顶点集合。 W r ( t − 1 ) W_r^{(t-1)} Wr(t1)是专门为顶点 v i v_i vi与顶点 v j v_j vj之间的关系 r r r编码的一个权重矩阵, W s e l f ( t − 1 ) W_{self}^{(t-1)} Wself(t1)是编码顶点 v i v_i vi前一个时间步的embedding向量的权重矩阵。 α ( v i , v j ) \alpha_{(v_i,v_j)} α(vi,vj)是一个attention权重因子,这个权重因子通过如下方式求的。

α ( v i , v j ) = exp ⁡ ( σ ( a e ⊤ [ W s e l f ( t − 1 ) h v i ( t − 1 ) ∥ h r ∥ W r ( t − 1 ) h v j ( t − 1 ) ] ) ) ∑ r ′ ∈ R ∑ v n ∈ N v i r ′ exp ⁡ ( σ ( a e ⊤ [ W s e l f ( t − 1 ) h v i ( t − 1 ) ∥ h r ′ ∥ W r ′ ( t − 1 ) h v n ( t − 1 ) ] ) ) \alpha_{(v_i,v_j)}=\frac{\exp(\sigma({a_e}^\top[W_{self}^{(t-1)}h_{v_i}^{(t-1)}\|h_r\|W_r^{(t-1)}h_{v_j}^{(t-1)}]))}{\sum_{r^\prime\in R}\sum_{v_n\in N_{v_i}^{r^\prime}\exp(\sigma({a_e}^\top[W_{self}^{(t-1)}h_{v_i}^{(t-1)}\|h_{r^\prime}\|W_{r^\prime}^{(t-1)}h_{v_n}^{(t-1)}]))}} α(vi,vj)=rRvnNvirexp(σ(ae[Wself(t1)hvi(t1)hrWr(t1)hvn(t1)]))exp(σ(ae[Wself(t1)hvi(t1)hrWr(t1)hvj(t1)]))

其中 ⋅ ⊤ \cdot^\top 代表转置, ∥ \| 代表concatenation操作, h r h_r hr编码了关系 r r r a e a_e ae为单头attention的权重矩阵。扩充到多头attention机制,最终的节点特征表示计算方式为:

h v i ( t ) = σ ( 1 L ∑ l = 1 L ( ∑ r ∈ R ∑ v j ∈ N v i r α ( v i , v j ) W r t − 1 h v j ( t − 1 ) + W s e l f t − 1 h v i ( t − 1 ) ) ) h_{v_i}^{(t)}=\sigma(\frac{1}{L}\sum_{l=1}^L(\sum_{r\in R}\sum_{v_j\in N_{v_i}^r}\alpha_{(v_i,v_j)}W_r^{t-1}h_{v_j}^{(t-1)}+W_{self}^{t-1}h_{v_i}^{(t-1)})) hvi(t)=σ(L1l=1L(rRvjNvirα(vi,vj)Wrt1hvj(t1)+Wselft1hvi(t1)))

其中 L L L为头的数量。

Final Entity Embedding

对于每一个节点 v i v_i vi,初始特征 h v i ( 0 ) h_{v_i}^{(0)} hvi(0)仅包括该节点的属性信息。通过信息传递,最后一个时间步的节点特征 h v i l a s t h_{v_i}^{last} hvilast聚合了图拓扑结构信息。将属性特征与包含图结构的特征通过attenton机制进行组合得到该实体(节点)的最终特征表示。

h v i f i n a l = α a t t r h v i ( 0 ) + α g r a p h h v i l a s t h_{v_i}^{final}=\alpha_{attr}h_{v_i}^{(0)}+\alpha_{graph}h_{v_i}^{last} hvifinal=αattrhvi(0)+αgraphhvilast,

α a t t r = exp ⁡ ( σ ( a s ⊤ h v i ( 0 ) ) ) exp ⁡ ( σ ( a s ⊤ h v i ( 0 ) ) ) + exp ⁡ ( σ ( a s ⊤ h v i l a s t ) ) \alpha_{attr}=\frac{\exp(\sigma(a_s^\top h_{v_i}^{(0)}))}{\exp(\sigma(a_s^\top h_{v_i}^{(0)}))+\exp(\sigma(a_s^\top h_{v_i}^{last}))} αattr=exp(σ(ashvi(0)))+exp(σ(ashvilast))exp(σ(ashvi(0)))

其中权重因子通过求softmax得到。

Adaptive Self-Adversarial Negative Sampling

负采样是一种用于近似具有庞大输出层的softmax函数的技术。它基于噪声对比估计,即好的模型可以从负信号中找出正信号。在关系预测问题中,负样本通常保持边不变而改变其中一个节点得到。
本文提出了自适应自对抗负采样方法(ASA),由于负样本是正样本的一个变体,可以通过利用好正样本来控制生成的负样本的hardness。因此,负样本选择函数如下:

arg ⁡ min ⁡ { v ˉ m , r , v ˉ n } ∉ E ∣ d r ′ ( f ′ ( v i ) , f ′ ( v j ) ) − d r ′ ( f ′ ( v ˉ m ) , f ′ ( v ˉ n ) ) − μ ∣ \mathop{\arg\min}_{\left\{\bar{v}_m,r,\bar{v}_n\right\}\notin E}|d_r^\prime(f^\prime(v_i),f^\prime(v_j))-d_r^\prime(f^\prime(\bar{v}_m),f^\prime(\bar{v}_n))-\mu| argmin{vˉm,r,vˉn}/Edr(f(vi)f(vj))dr(f(vˉm),f(vˉn))μ

其中 f ′ f^\prime f为上文介绍的GelGNN,输出为节点的embedding向量。 d r ′ d_r^\prime dr为一个求得分的函数,输出为两个顶点之间存在关系 r r r的得分score。 μ \mu μ为一个正值常量,相当于一个margin值。
通过如上方法,对于一个特定的正样本,ASA根据score值能选择出有适当hardness的负样本。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值