给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
1
2
3
4
5
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
第一次错误代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
if(!root)return true;
if(root->left && root->left->val >= root->val)return false;
if(root->right && root->right->val <= root->val)return false;
return isValidBST(root->left) && isValidBST(root->right);
}
};
上述写法,没有考虑这种情况
10
/ \
5 15
/ \
6 20
————————————————
这种写法的错误在于没有理清楚子问题
的本质。节点左子树的所有节点都小于当前节点,而不是仅仅左根节点小于root
,对于右子树同理。故设置头和尾进行判断当前节点是否符合二叉搜索树
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
return helper(root, LONG_MIN, LONG_MAX);
}
bool helper(TreeNode* root, long start, long end){
if(root == NULL)return true;
if(root->val <= start || root->val >= end)return false;
return helper(root->left, start,root->val) && helper(root->right, root->val, end);
}
};