LeetCode53. Maximum Subarray

由于这周老师在课堂上提到了分治法,于是便想着做下相关的题目。

在LeetCode搜索栏里输入divide-and-conquer,仅搜到了第53题:Maximum Subarray,难度系数为easy。


题目要求如下:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],

the contiguous subarray [4,-1,2,1] has the largest sum = 6.


采用分治法的基本思路是一分为二,逐层递归,不过由于此题中,存在中间subarray值最大的可能性,所以不能粗暴地一分为二进行最大值比较,还要找出中间部分的最大值,再进行左、中、右的最大值比较。

我的C++代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        return Max(nums, 0, nums.size() - 1);
    }
    int Max(vector<int>& nums, int left, int right) {
        if (left == right) return nums[left];
        int mid = left + (right - left) / 2;
        int mid_left_max = nums[mid];
        int mid_right_max = nums[mid+1];
        int mid_left_sum = 0;
        int mid_right_sum = 0;
        for (int i = mid; i >= left; i--) {
            mid_left_sum += nums[i]; 
            mid_left_max = max(mid_left_max, mid_left_sum);
        }
        for (int i = mid + 1; i <= right; i++) {
            mid_right_sum += nums[i]; 
            mid_right_max = max(mid_right_max, mid_right_sum);
        }
        int middle_max = mid_left_max + mid_right_max;
        
        int tem_max = max(Max(nums, left, mid), Max(nums, mid+1, right));
        return max(tem_max, middle_max);
    }
};

结果如下:


以上分治法的时间复杂度为O(nlogn),由结果可看出这并非最优解决方案。

于是我们可以思考其他方法。

最容易想到的便是穷举法,不过时间复杂度比较大,仅能够优化到O(n^2)。

从网上搜到Kadane算法(扫描法),在此题中,进行遍历的时候,数字逐一相加,当连续的一段子数组总和小于零时则可抛弃,重新进行接下来的数字相加。代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int length=nums.size();
        int result=nums[0];
        int current=nums[0];
        for(int i=1;i<length;i++)
        {
            current=max(current,0)+nums[i];
            if(current>result)
                result=current;
        }
        return result;
    }
};
该方法的时间复杂度仅为O(n)。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值