协同过滤推荐算法的初步了解与实战

本文介绍了协同过滤推荐算法的基础知识,包括基于用户的协同过滤和基于物品的协同过滤。通过距离度量和相似度度量计算用户之间的相似性,实现电影推荐。针对大数据场景,讨论了两种方法的适用性和优缺点。
摘要由CSDN通过智能技术生成

       协作型过滤是1992年David Goldberg 在施乐帕研究中心(Xerox PARC)的一篇题为《Using collaborative filtering to weave an information tapestry》的论文中首次使用的。现在大多数的web站点在各个方面都运用到了协作型过滤算法。

    本文简单介绍基于用户的协同过滤算法和基于物品的协同过滤算法原理,最后将运用算法实现推荐观众合适的影片的实战。

一、基于用户的协同过滤算法

       以我的理解,user_based即在一大群人中找到与我们在某处有相似爱好的一小群人中,分析他们的所偏爱的其他内容,将这些进行排名为我们进行推荐。本文中所讨论的偏爱物品是对影片进行分析。我们首先获得数据集,即不同客户对不用影片的评分,分数越高则代表客户越喜欢这部影片。在这里运用python中字典的方法将数据集表示出来。其次我们需要做的就是寻找和我们有相似偏好的一小群人即相近的用户。有很多计算相似度的评价值。以下介绍几种方法。需要的数据集如下:

critics={'Lisa Rose':{'Lady in the Water':2.5,'Snakes on a plane':3.5,
 'Just My Luck':3.0,'Superman Returns':3.5,'You,Me,and Dupree':2.5,
 'The Night Listener':3.0},
 'Gene Seymour':{'Lady in the Water':3.0,'Snakes on a plane':3.5,
 'Just My Luck':1.5,'Superman Returns':5.0,'You,Me,and Dupree':3.0,
 'The Night Listener':3.5},
 'Michael Phillips':{'Lady in the Water':2.5,'Snakes on a plane':3.0,
 'Superman Returns':3.5,'The Night Listener':4.0},
 'Claudia Puig':{'Snakes on a plane':3.5,
 'Just My Luck':3.0,'Superman Returns':4.0,'You,Me,and Dupree':2.5,
 'The Night Listener':4.5},
 'Mick LaSlle':{'Lady in the Water':3.0,'Snakes on a plane':4.0,
 'Just My Luck':2.0,'Superman Returns':3.0,'You,Me,and Dupree':3.0,
 'The Night Listener':2.0},
 'Jack Matthews':{'Lady in the Water':3.0,'Snakes on a plane':4.0,
 'Superman Returns':5.0,'You,Me,and Dupree':3.5,'The Night Listener
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值