Suppose an array of length n
sorted in ascending order is rotated between 1
and n
times. For example, the array nums = [0,1,2,4,5,6,7]
might become:
[4,5,6,7,0,1,2]
if it was rotated4
times.[0,1,2,4,5,6,7]
if it was rotated7
times.
Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]]
1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
.
Given the sorted rotated array nums
of unique elements, return the minimum element of this array.
You must write an algorithm that runs in O(log n) time.
Example 1:
Input: nums = [3,4,5,1,2] Output: 1 Explanation: The original array was [1,2,3,4,5] rotated 3 times.
Example 2:
Input: nums = [4,5,6,7,0,1,2] Output: 0 Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times.
Example 3:
Input: nums = [11,13,15,17] Output: 11 Explanation: The original array was [11,13,15,17] and it was rotated 4 times.
Constraints:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
- All the integers of
nums
are unique. nums
is sorted and rotated between1
andn
times.
class Solution {
public:
int findMin(vector<int>& nums) {
int low = 0;
int high = nums.size() - 1;
while(low < high){
int p = low + (high - low)/2;
if(nums[p] < nums[high]){
high = p;
}else{
low = p + 1;
}
}
return nums[low];
}
};
class Solution {
public:
int findMin(vector<int>& nums) {
sort(nums.begin(), nums.end());
return nums[0];
}
};
class Solution {
public:
int findMin(vector<int>& nums) {
return *min_element(nums.begin(),nums.end());
}
};