logistic regression

这篇博客探讨了逻辑回归中遇到的完全分类和类完全分离现象。完全分离可能导致无法得到有效估计,而拟完全分离时,不做处理可能是合理策略,但该策略不适用于完全分离的情况。变量进入和删除的统计显著性水平分别设为0.05和0.1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归中出现:完全分类和类完全分离的原因。

参考文章: https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/

如果是拟完全分离的话,可以对那个变量不进行处理。

If it is quasi-complete separation, the easiest strategy is the "Do nothing" strategy. This is because that the maximum likelihood for other predictor variables are still valid. The drawback is that we don’t get any reasonable estimate for the variable X that actually predicts the outcome variable effectively.  This strategy does not work well for the situation of complete separation.

逻辑回归:变量进入的统计学检验水平为0.05, 变量删除的统计学检验水平为0.1

> mydata <- read.csv("binary.csv")
> head(mydata)
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值