import java.util.*;
public class NQueen2{
static int n;//皇后个数
static int[] x;//当前解
static long sum;//当前已经找到的可行方案数
public static long nQueen(int nn){
n=nn;
sum=0;
x=new int[n+1];
for(int i=0;i<=n;i++) x[i]=0;
backtrack();
return sum;
}
public static boolean place(int k)//考察皇后k放置在x[k]列是否发生冲突
{
for(int i=1; i<k; i++)
if (x[k]==x[i]||Math.abs(k-i)==Math.abs(x[k]-x[i])) return false;
return true;
}
private static void backtrack(){
x[1]=0;
int k=1;
while(k>0){//回溯到根节点再往上回溯,成了一个死结点了
x[k]+=1;//从当前列加1的位置开始搜索
while((x[k]<=n)&&(!(place(k)))) x[k]+=1;//不满足条件,继续搜索下一列位置
if(x[k]<=n) //存在满足条件的列
{
if(k==n) {sum++;//若是最后一个皇后,则停止搜索
int[][] q=new int[n+1][n+1];//存放棋盘上皇后在各位置的情况
for(int i=0;i<=n;i++)
for(int j=0;j<=n;j++)
q[i][j]=0;
System.out.println("第"+sum+"种可行方案为:");
for(int i=1;i<=n;i++) q[i][x[i]]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
System.out.print(q[i][j]+" ");
System.out.println();
}
}
else {//不是则处理下一行的皇后
k++;
x[k]=0;
}
}
else k--;//若是x[k]>n则回溯达到上一层
}
}
public static void main(String[] args){
Scanner s=new Scanner(System.in);
System.out.println("请输入皇后的个数:");
int n=s.nextInt();
System.out.print("当皇后个数为"+n+"时,可行方案数为:"+nQueen(n));
}
}
n皇后问题java回溯实现
最新推荐文章于 2024-09-21 22:15:06 发布