腾讯员工平均月薪 7 万?那腾讯高管日薪有几个 7 万?

(给技术最前线加星标,每天看技术热点)

原创整理:技术最前线(id:TopITNews)

腾讯员工平均月薪 7 万?

5 月 15 日,腾讯发布 2019 年第一季度财报,截至 2019 年 3 月 31 日止,三个月总酬金成本为人民币 116.16 亿元,同一时期腾讯员工数量达到 5.46 万名。

新浪科技直接发布了一篇名为《腾讯拥有 5.46 万名员工,平均月薪 7 万》的报道,很快在网上引发热议。

640?wx_fmt=png

对此,有腾讯员工表示不能这样算!

据悉,腾讯财报中的薪酬数据除了包括年终奖之外,还有员工培训、福利开支,以及公司缴纳的公积金和各种保险。

上述腾讯内部员工还提到刚参加了一个培训,单教材版权费就3000元/人,这部分费用也由公司支出。

与此同时,网友们也纷纷指出这样计算平均工资并不合理,例如:

640?wx_fmt=png

上图网友说(腾讯)大佬月薪 6 位数起步。

那腾讯董事及高管薪酬又是多少呢?

虽然今年腾讯财报没有公开董事及高管的薪酬水平,但以前公布过。

据北京青年报 2016 年报道,

在腾讯 2015 年财报附注的 31 项“雇员福利开支”中,公布了 12 位非董事的高级管理人员的酬金。

其中,2015 年高级管理人员的酬金(包括薪金、花红、津贴和福利)总计 7 亿多人民币,是 2014 年此项开支数额 3.5 亿的 2 倍。

640?wx_fmt=jpeg

这 12 位腾讯高管的年薪范围是:

  • 2.55亿~3.15 亿港元的 1 位,

  • 1.95亿~2.55 亿港元的 1 位,

  • 4500万~6000 万港元的 3 位,

  • 3000万~4500 万港元的 4 位,

  • 1500万元~3000 万港元的 1 位,

  • 800万~1500 万港元的 2 位

  • *腾讯财报中并未公开这些高管姓名

按 2019 年 5 月 16日汇率(1港元=0.8763人民币)来算,腾讯高管的最高日薪约 70 万人民币( 10 个 7 万),最低日薪也有约 1.9 万人民币。

640?wx_fmt=png

(不知腾讯高管会不会反对我们这种日薪算法?私以为还挺合理的 2_05.png

相比腾讯高管之下,马化腾等 7 位董事的薪酬则低。据腾讯 2015 年财报显示,总裁刘炽平以 7497 万元排第一,马化腾以 3282.8 万元排第二,最少的也有 181.2 万。

马化腾薪酬虽然不及个别董事或高管,但人家股票多呀。据新浪科技 5 月 13 日报道,

腾讯日前向港交所递交的年报显示,截至 2018 年 12 月 31 日,
马化腾持股 8.61%,为第二大股东,价值近 400 亿美元 ;
腾讯总裁刘炽平持股为 0.52%,价值 24 亿美元;
腾讯最大股东依然为南非媒体和投资公司 Naspers,持股为 31.1%。

腾讯高层的薪酬由谁决定?

据北京青年报,虽然腾讯并未给出官方回应,但根据腾讯年报显示,腾讯集团内有一个“薪酬委员会”,负责厘定高级管理团队各成员的薪酬待遇。

推荐阅读

(点击标题可跳转阅读)

觉得这条资讯有帮助?请转发给更多人

关注 技术最前线 加星标看 IT 要闻

640?wx_fmt=png

腾讯高管的日薪,你们看到了吧?

智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值