求平方根的两种简单算法

求平方根的算法


1.b=a/2;
while (abs(b*b-a)>e)  // e为一个很小的数,指明了算法的精度
 b=(b+a/b)/2;

2.
条件:N(N+2*Q*R) <=Y
n进制时,Q=n;R为上一次的结果;N为要试的满足条件的最大的值;Y为计算到这时的余数
(注意:补位时要看进制,如果为10进制,则应补100,即10*10;二进制时应补4,即2*2)

例1:10开方根(10进制)
sqrt(10)=3.1622776601683793319988935444327

  3. 1  6  2          
)10
  9           <=N(N+2*Q*R)=3*(3+2*10*0)=9<10 上 3
  1 00
    61        <=N(N+2*Q*R)=1*(1+2*10*3)=61<100 上 1
    39 00
    37 56     <=N(N+2*Q*R)=6*(6+2*10*31)=3756<3900 上 6
     1 44 00
     1 26 44  <=N(N+2*Q*R)=2*(2+2*10*316)=12644<14400 上 2
       17 56
   ....
   ...

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
求任意实数c的算术平方根g的算法如下: 1. 初始化迭代的初始值guess为c的一半:guess = c / 2 2. 利用牛顿迭代法来逼近算术平方根,迭代的终止条件为前后两次迭代结果的差的绝对值小于一个设定的精度值ε。 3. 在每次迭代中,更新guess的值:guess = (guess + c / guess) / 2 4. 当满足终止条件时,输出当前的guess值作为算术平方根的近似值。 牛顿迭代法是一种逼近方法,通过不断逼近的方式寻找函数的零点。在这里,我们将平方根的求解问题转化为了求解函数f(x) = x^2 - c的根的问题。其中,guess是我们在每次迭代中作为近似值的猜测解。通过进行迭代运算,每一次迭代guess都会逐渐接近实际的算术平方根。 牛顿迭代法的原理是,通过利用函数的泰勒级数来逼近函数的零点。在这里,我们使用了一阶近似:f(x) ≈ f(guess) + f'(guess)(x - guess)。将f(x) = 0代入该式子,可以得到x = guess - f(guess) / f'(guess)。将f(x) = x^2 - c代入上述式子,可以得到迭代公式:guess = (guess + c / guess) / 2。 通过不断迭代,guess会逐渐接近真实的算术平方根g。当前后两次迭代结果的差的绝对值小于设定的精度值ε时,我们可以认为找到了一个接近于g的解。将此解作为算术平方根g的近似值输出。 需要注意的是,初始的猜测解guess的选择会影响算法的收敛速度和精度。通常情况下,取c的一半作为初始的猜测解可以提供较好的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

redleaves

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值