在C/C++语言编程过程中,一般的字符串搜索操作都是通过标准库的strstr()函数来完成的,这在通常的情况下,因为字符串的搜索操作不多,并不会产生效率问题。实际上,这个函数的时间复杂度不容乐观。如果要从长度为n的字符串中查找长度为m的子字符串,那么这个strstr()函数的最坏时间复杂度为O(n*m),可见,随着子字符串长度m的增大,strstr()函数的时间复杂度也相应地成倍增加,有没有更加高效的算法呢?
KMP(Knuth-Morris-Pratt)算法通过预先计算模式字符串中相应字符处的回溯索引,避免了模式匹配时不必要的回溯操作,从而提高了效率,将时间复杂度变成了O(m+n)。
KMP字符串查找(匹配)算法最大的好处,并不是它比strstr快,而是它不回溯。这是很奇妙的一个特征。这意味着目标文本只需要提供一个取得下一个字符的函数(在WINX中,这个函数叫get),就可以实现搜索。这对KMP算法的客户而言,无疑是非常有利的一件事情。
WINX的KMP字符串查找(匹配)算法总体来说用法很简单,唯一需要注意的是,和一般的匹配算法不同,WINX匹配成功后,目标文本中当前位置(position)指向的是被匹配串的末尾,而不是开始。例如,C库的strstr("1234abcdefg", "abc"),返回的结果是指向"abcdefg"中的'a'。而WINX的KMP算法返回的是"defg"中的'd'。
Java SDK的String类中的indexOf方法没有使用KMP搜索,基本上算是最简单的搜索:
view sourceprint?01 /**
02 * Code shared by String and StringBuffer to do searches. The source is the
03 * character array being searched, and the target is the string being
04 * searched for.
05 *
06 * @param source
07 * the characters being searched.
08 * @param sourceOffset
09 * offset of the source string.
10 * @param sourceCount
11 * count of the source string.
12 * @param target
13 * the characters being searched for.
14 * @param targetOffset
15 * offset of the target string.
16 * @param targetCount
17 * count of the target string.
18 * @param fromIndex
19 * the index to begin searching from.
20 */
21 static int indexOf(char[] source, int sourceOffset, int sourceCount,
22 char[] target, int targetOffset, int targetCount, int fromIndex) {
23 // if start from a position that is beyond the source string
24 if (fromIndex >= sourceCount) {
25 // return the string length if target string is empty, otherwise,
26 // return -1 which means match fails
27 return (targetCount == 0 ? sourceCount : -1);
28 }
29 // correct the fromIndex
30 if (fromIndex < 0) {
31 fromIndex = 0;
32 }
33 // if target string is empty, return fromIndex
34 if (targetCount == 0) {
35 return fromIndex;
36 }
37 // first char to match
38 char first = target[targetOffset];
39 /*
40 * a little optimize. let's say the source string length is 9 and the
41 * target String length is 7. Then starting from 3 (index is 2) of
42 * source string is the last change to match the whole target sting.
43 * Otherwise, there are only 6 characters in source string and it would
44 * definitely not going to match the target string whose length is 7.
45 */
46 int max = sourceOffset + (sourceCount - targetCount);
47 // loop from the first to the max
48 for (int i = sourceOffset + fromIndex; i <= max; i++) {
49 /* Look for first character. */
50 if (source[i] != first) {
51 // using i <= max, not i < max
52 while (++i <= max && source[i] != first)
53 ;
54 }
55 /* Found first character, now look at the rest of v2 */
56 if (i <= max) {
57 int j = i + 1;
58 int end = j + targetCount - 1;
59 // using j < end, not j <= end
60 for (int k = targetOffset + 1; j < end
61 && source[j] == target[k]; j++, k++)
62 ;
63 if (j == end) {
64 /* Found whole string. */
65 return i - sourceOffset;
66 }
67 // if match fails, i++ and loop again, there are to iterators
68 // for two loops. i and j.
69 }
70 }
71 return -1;
72 }
这是Java String中的搜索算法,对于原字符串使用了两个指针来进行搜索。但是实质上来讲,这个算法还是有回溯的,可以看出来,每次搜索的时候,j都会搜索到一个大于i的位置,而如果搜索失败,则下次搜索将是从i++开始,这就是回溯了。
KMP的优势就是没有回溯,这对于只能够使用一个指针进行搜索的情况下,不仅仅有效率上的优势,实现起来也更自然。当然对于数组来说,使用俩指针并没有什么不便,如果是对于文件或者输入流进行搜索,那回溯起来就会很麻烦了。下面是KMP搜索。
KMP算法的核心就是不回溯原字符串指针,这点其实不难做到,重要的是要想到这一点——对于回溯的字符,其实都是已知的。解释一下就是,比如在"abcdefg"中搜索"abcdeg",前五个字符"abcdeg"都是匹配的,第六个字符f和g不匹配,这时候,对于上面的搜索算法,i将会+1,整个匹配重新开始一次,这就是回溯了。但是仔细想一下,回溯其实完全可以避免的,因为如果知道是在第六个字符不匹配,那就说明前五个字符都是匹配的,从而说明"知道回溯之后的字符是什么",对于这个例子来说,我们肯定知道源字符串前面五个字符是"abcde"。这是KMP搜索的根基。
好,下面让我们抛开源字符串吧!我们只关心目标字符串,也就是"abcdeg"。下面我们来设想,如果在搜索中发现源字符串的【n】字符和目标字符串的【m】字符匹配失败,那说明什么呢?说明之前的字符都是匹配的,否则也不会走到这里。也就是源字符串的【n-m】到【n-1】这m个字符与目标字符串的【0】到【m-1】这m个字符匹配。既然已经在搜索之前知道这个相等关系,那何苦在搜索的时候一次又一次的回溯呢?这个本来就是可以预测的,是搞一次就得的事情。因为源字符串的【n-m】到【n-1】是已知的。所以不用每次都死板的回溯到源字符串的n-m+1。
举例来说,对于在"abababc"中搜索"ababc",第一次不匹配的情况如下
view sourceprint?1 0 1 2 3 4 5 6
2 a b a b a b c
3 a b a b c
4 ^
这时候,如果把指针回溯到源字符串的1位置,其实没有意义的,因为它是b,和目标字符串的a不匹配。而且,我们其实已经知道源字符串0到3这四个字符的值是跟目标字符串的四个字符一样的,都是abab。KMP的思想就是,充分利用这个已知条件,"源字符串不回溯,尽量让目标字符串少回溯,然后继续进行搜索"。那应该让目标字符串回溯到什么地方呢?这就看已经匹配的字符串的内容了。
使用S代表源字符串,T代表目标字符串,S[n]和T[m]失配(注意,因为失配了,这时候S[n]是什么是不知道的)。对于源字符串已知的只有S[n-m+1]到S[n-1]这m-1个字符。假设能够找到这样一个k,使得S[n-k]...S[n-1]=T[0]....T[k-1] (0<k<m),那么就只需要保持S不回溯,让T回溯到K,然后继续匹配就好了。而如果能够找到一个最大的K值,那么效率则是最高的。
对于上面的例子,k的值是2,KMP搜索的下一个状态是:
view sourceprint?1 0 1 2 3 4 5 6
2 a b a b a b c
3 a b a b c
4 ^
然后继续匹配就成功啦。
所以,KMP算法的核心是,如何为目标字符串的每个位置的找到一个k值,组成一个数组F,好在每次匹配到目标字符串的m失配的时候,将目标字符串回溯到F[m],然后继续进行匹配。找到这个数组之后,KMP搜索就算是完成80%了。
下面是构建这个数组F的方法。
这时候目标字符串身兼源字符串和目标字符串两个角色。构建数组T可以说是一个步进的过程,需要用到之前的结果。首先是F[0],F[0]的意思是第一个字符就不匹配,也就是说对源字符串一无所知,这时候没得搞了,直接要源字符串向前挪动一个。在F里,我们使用-1来标记第一个字符就匹配失败的情况。也就是F[0]=-1。F[1]其实肯定是0。我们真正需要计算的是从F[2]到最后的。下面是>=2的时候的计算方法。注意,F[i]代表S的第i个字符匹配"失败"的时候,T需要回溯到的索引的值。如何求F[i]的值呢?首先取得F[i-1]的值,然后看S[i-1]是否=T[F[i-1]],如果等于,那么F[i]=F[i-1]+1。这个原理是递归的。F[i-1]的值是在i-1失配的时候,T索引回溯到的值,如果这时候,这个值与S[i-1]相等,那就说明F[i]可以在F[i-1]的基础上增加1了。否则继续检查S[i-1]是否等于T[[F[i-1]]],直到没有的搜索了,就是0。下面是具体的代码:
view sourceprint?01 /**
02 * each value of array rollback means: when source[i] mismatch pattern[i],
03 * KMP will restart match process form rollback[j] of pattern with
04 * source[i]. And if rollback[i] == -1, it means the current source[i] will
05 * never match pattern. then i should be added by 1 and j should be set to
06 * 0, which means restart match process from source[i+1] with pattern from
07 * pattern[0].
08 *
09 * @param pattern
10 * @return
11 */
12 private static int[] getRollbackArray(char[] pattern) {
13 int[] rollback = new int[pattern.length];
14 for (int i = 0; i < pattern.length; i++) {
15 rollback[i] = 0;
16 }
17 rollback[0] = -1;
18 for (int i = 1; i < rollback.length; i++) {
19 char prevChar = pattern[i - 1];
20 int prevRollback = i - 1;
21 while (prevRollback >= 0) {
22 int previousRollBackIdx = rollback[prevRollback];
23 if ((previousRollBackIdx == -1)
24 || (prevChar == pattern[previousRollBackIdx])) {
25 rollback[i] = previousRollBackIdx + 1;
26 break;
27 } else {
28 prevRollback = rollback[prevRollback];
29 }
30 }
31 }
32 return rollback;
33 }
上面并没有吧F[1]=1写成固定的,不过根据计算,F[1]始终是=0的。有了这个rollback数组,KMP搜索就是水到渠成了:
view sourceprint?01 /**
02 * search pattern chars in source chars.
03 *
04 * @param source
05 * @param pattern
06 * @return
07 */
08 public static int searchKMP(char[] source, char[] pattern) {
09 // validation
10 if (source == null || source.length == 0 || pattern == null
11 || pattern.length == 0) {
12 return -1;
13 }
14
15 // get the rollback array.
16 int[] rollback = getRollbackArray(pattern);
17
18 // incremental index of pattern. pointing the char to compare with.
19 int currMatch = 0;
20 int len = pattern.length;
21 // i point the char to compare with
22 for (int i = 0; i < source.length;) {
23 // if current char match
24 if ((currMatch == -1) || (source[i] == pattern[currMatch])) {
25 /*
26 * then each of the indexes adding by one, moving to the next
27 * char for comparation. notice that if currMatch is -1, it
28 * means the first char in pattern can not be matched. so i add
29 * by one to move on. and currMatch add by one so its value is
30 * 0.
31 */
32 i++;
33 currMatch++;
34 /*
35 * if reaches the end of pattern, then match success, return the
36 * index of first matched char.
37 */
38 if (currMatch == len) {
39 return i - len;
40 }
41 } else {
42 /*
43 * if current char mismatch, then rollback the next char to
44 * compare in pattern.
45 */
46 currMatch = rollback[currMatch];
47 }
48 }
49 return -1;
50 }
下面是几个测试方法:
view sourceprint?01 @Test
02 public void testRollBackArray() {
03 int[] expectedRollback = new int[] { -1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0,
04 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0 };
05 int[] rollback = getRollbackArray("PARTICIPATE IN PARACHUTE"
06 .toCharArray());
07 Assert.assertArrayEquals("Rollback array compare failed to match!",
08 expectedRollback, rollback);
09 }
10 @Test
11 public void testKMPSearchMatch() {
12 int matchIndex = searchKMP(
13 "aaaaaababacbaslierjalsdzmflkasjf".toCharArray(),
14 "ababacb".toCharArray());
15 Assert.assertEquals(5, matchIndex);
16 matchIndex = searchKMP(
17 "aaaaaababacbaslierjalsdzmflkasjf".toCharArray(),
18 "aaaaaababacbaslierjalsdzmflkasjf".toCharArray());
19 Assert.assertEquals(0, matchIndex);
20 }
21 @Test
22 public void testKMPSearchNoMatch() {
23 int matchIndex = searchKMP("ABCABCDABABCDABCDABDE".toCharArray(),
24 "hjABCDABD".toCharArray());
25 Assert.assertEquals(-1, matchIndex);
26 }
把这三段代码放在一个类里,KMP搜索就算是完事儿了。
在自己看KMP算法之前,很多文章都说神马KMP有代价,只适合目标字符串很长很长,搜索字符串也很长很长的case。但是就我看下来,KMP对于日常一般的搜索也是有优势的。首先,构建rollback数组计算并不复杂,当然需要一个额外的数组空间。但是对于匹配来说,还是有很大的加速优势的,而且目标字符串不需要回溯。所以KMP唯一的代价就是需要一个额外的数组,实际占用的内存应该是目标字符串的两倍(String是char的数组,char=short,int是char的两倍)。难道,真的是为了节省内存所以不采用KMP搜索?
KMP(Knuth-Morris-Pratt)算法通过预先计算模式字符串中相应字符处的回溯索引,避免了模式匹配时不必要的回溯操作,从而提高了效率,将时间复杂度变成了O(m+n)。
KMP字符串查找(匹配)算法最大的好处,并不是它比strstr快,而是它不回溯。这是很奇妙的一个特征。这意味着目标文本只需要提供一个取得下一个字符的函数(在WINX中,这个函数叫get),就可以实现搜索。这对KMP算法的客户而言,无疑是非常有利的一件事情。
WINX的KMP字符串查找(匹配)算法总体来说用法很简单,唯一需要注意的是,和一般的匹配算法不同,WINX匹配成功后,目标文本中当前位置(position)指向的是被匹配串的末尾,而不是开始。例如,C库的strstr("1234abcdefg", "abc"),返回的结果是指向"abcdefg"中的'a'。而WINX的KMP算法返回的是"defg"中的'd'。
Java SDK的String类中的indexOf方法没有使用KMP搜索,基本上算是最简单的搜索:
view sourceprint?01 /**
02 * Code shared by String and StringBuffer to do searches. The source is the
03 * character array being searched, and the target is the string being
04 * searched for.
05 *
06 * @param source
07 * the characters being searched.
08 * @param sourceOffset
09 * offset of the source string.
10 * @param sourceCount
11 * count of the source string.
12 * @param target
13 * the characters being searched for.
14 * @param targetOffset
15 * offset of the target string.
16 * @param targetCount
17 * count of the target string.
18 * @param fromIndex
19 * the index to begin searching from.
20 */
21 static int indexOf(char[] source, int sourceOffset, int sourceCount,
22 char[] target, int targetOffset, int targetCount, int fromIndex) {
23 // if start from a position that is beyond the source string
24 if (fromIndex >= sourceCount) {
25 // return the string length if target string is empty, otherwise,
26 // return -1 which means match fails
27 return (targetCount == 0 ? sourceCount : -1);
28 }
29 // correct the fromIndex
30 if (fromIndex < 0) {
31 fromIndex = 0;
32 }
33 // if target string is empty, return fromIndex
34 if (targetCount == 0) {
35 return fromIndex;
36 }
37 // first char to match
38 char first = target[targetOffset];
39 /*
40 * a little optimize. let's say the source string length is 9 and the
41 * target String length is 7. Then starting from 3 (index is 2) of
42 * source string is the last change to match the whole target sting.
43 * Otherwise, there are only 6 characters in source string and it would
44 * definitely not going to match the target string whose length is 7.
45 */
46 int max = sourceOffset + (sourceCount - targetCount);
47 // loop from the first to the max
48 for (int i = sourceOffset + fromIndex; i <= max; i++) {
49 /* Look for first character. */
50 if (source[i] != first) {
51 // using i <= max, not i < max
52 while (++i <= max && source[i] != first)
53 ;
54 }
55 /* Found first character, now look at the rest of v2 */
56 if (i <= max) {
57 int j = i + 1;
58 int end = j + targetCount - 1;
59 // using j < end, not j <= end
60 for (int k = targetOffset + 1; j < end
61 && source[j] == target[k]; j++, k++)
62 ;
63 if (j == end) {
64 /* Found whole string. */
65 return i - sourceOffset;
66 }
67 // if match fails, i++ and loop again, there are to iterators
68 // for two loops. i and j.
69 }
70 }
71 return -1;
72 }
这是Java String中的搜索算法,对于原字符串使用了两个指针来进行搜索。但是实质上来讲,这个算法还是有回溯的,可以看出来,每次搜索的时候,j都会搜索到一个大于i的位置,而如果搜索失败,则下次搜索将是从i++开始,这就是回溯了。
KMP的优势就是没有回溯,这对于只能够使用一个指针进行搜索的情况下,不仅仅有效率上的优势,实现起来也更自然。当然对于数组来说,使用俩指针并没有什么不便,如果是对于文件或者输入流进行搜索,那回溯起来就会很麻烦了。下面是KMP搜索。
KMP算法的核心就是不回溯原字符串指针,这点其实不难做到,重要的是要想到这一点——对于回溯的字符,其实都是已知的。解释一下就是,比如在"abcdefg"中搜索"abcdeg",前五个字符"abcdeg"都是匹配的,第六个字符f和g不匹配,这时候,对于上面的搜索算法,i将会+1,整个匹配重新开始一次,这就是回溯了。但是仔细想一下,回溯其实完全可以避免的,因为如果知道是在第六个字符不匹配,那就说明前五个字符都是匹配的,从而说明"知道回溯之后的字符是什么",对于这个例子来说,我们肯定知道源字符串前面五个字符是"abcde"。这是KMP搜索的根基。
好,下面让我们抛开源字符串吧!我们只关心目标字符串,也就是"abcdeg"。下面我们来设想,如果在搜索中发现源字符串的【n】字符和目标字符串的【m】字符匹配失败,那说明什么呢?说明之前的字符都是匹配的,否则也不会走到这里。也就是源字符串的【n-m】到【n-1】这m个字符与目标字符串的【0】到【m-1】这m个字符匹配。既然已经在搜索之前知道这个相等关系,那何苦在搜索的时候一次又一次的回溯呢?这个本来就是可以预测的,是搞一次就得的事情。因为源字符串的【n-m】到【n-1】是已知的。所以不用每次都死板的回溯到源字符串的n-m+1。
举例来说,对于在"abababc"中搜索"ababc",第一次不匹配的情况如下
view sourceprint?1 0 1 2 3 4 5 6
2 a b a b a b c
3 a b a b c
4 ^
这时候,如果把指针回溯到源字符串的1位置,其实没有意义的,因为它是b,和目标字符串的a不匹配。而且,我们其实已经知道源字符串0到3这四个字符的值是跟目标字符串的四个字符一样的,都是abab。KMP的思想就是,充分利用这个已知条件,"源字符串不回溯,尽量让目标字符串少回溯,然后继续进行搜索"。那应该让目标字符串回溯到什么地方呢?这就看已经匹配的字符串的内容了。
使用S代表源字符串,T代表目标字符串,S[n]和T[m]失配(注意,因为失配了,这时候S[n]是什么是不知道的)。对于源字符串已知的只有S[n-m+1]到S[n-1]这m-1个字符。假设能够找到这样一个k,使得S[n-k]...S[n-1]=T[0]....T[k-1] (0<k<m),那么就只需要保持S不回溯,让T回溯到K,然后继续匹配就好了。而如果能够找到一个最大的K值,那么效率则是最高的。
对于上面的例子,k的值是2,KMP搜索的下一个状态是:
view sourceprint?1 0 1 2 3 4 5 6
2 a b a b a b c
3 a b a b c
4 ^
然后继续匹配就成功啦。
所以,KMP算法的核心是,如何为目标字符串的每个位置的找到一个k值,组成一个数组F,好在每次匹配到目标字符串的m失配的时候,将目标字符串回溯到F[m],然后继续进行匹配。找到这个数组之后,KMP搜索就算是完成80%了。
下面是构建这个数组F的方法。
这时候目标字符串身兼源字符串和目标字符串两个角色。构建数组T可以说是一个步进的过程,需要用到之前的结果。首先是F[0],F[0]的意思是第一个字符就不匹配,也就是说对源字符串一无所知,这时候没得搞了,直接要源字符串向前挪动一个。在F里,我们使用-1来标记第一个字符就匹配失败的情况。也就是F[0]=-1。F[1]其实肯定是0。我们真正需要计算的是从F[2]到最后的。下面是>=2的时候的计算方法。注意,F[i]代表S的第i个字符匹配"失败"的时候,T需要回溯到的索引的值。如何求F[i]的值呢?首先取得F[i-1]的值,然后看S[i-1]是否=T[F[i-1]],如果等于,那么F[i]=F[i-1]+1。这个原理是递归的。F[i-1]的值是在i-1失配的时候,T索引回溯到的值,如果这时候,这个值与S[i-1]相等,那就说明F[i]可以在F[i-1]的基础上增加1了。否则继续检查S[i-1]是否等于T[[F[i-1]]],直到没有的搜索了,就是0。下面是具体的代码:
view sourceprint?01 /**
02 * each value of array rollback means: when source[i] mismatch pattern[i],
03 * KMP will restart match process form rollback[j] of pattern with
04 * source[i]. And if rollback[i] == -1, it means the current source[i] will
05 * never match pattern. then i should be added by 1 and j should be set to
06 * 0, which means restart match process from source[i+1] with pattern from
07 * pattern[0].
08 *
09 * @param pattern
10 * @return
11 */
12 private static int[] getRollbackArray(char[] pattern) {
13 int[] rollback = new int[pattern.length];
14 for (int i = 0; i < pattern.length; i++) {
15 rollback[i] = 0;
16 }
17 rollback[0] = -1;
18 for (int i = 1; i < rollback.length; i++) {
19 char prevChar = pattern[i - 1];
20 int prevRollback = i - 1;
21 while (prevRollback >= 0) {
22 int previousRollBackIdx = rollback[prevRollback];
23 if ((previousRollBackIdx == -1)
24 || (prevChar == pattern[previousRollBackIdx])) {
25 rollback[i] = previousRollBackIdx + 1;
26 break;
27 } else {
28 prevRollback = rollback[prevRollback];
29 }
30 }
31 }
32 return rollback;
33 }
上面并没有吧F[1]=1写成固定的,不过根据计算,F[1]始终是=0的。有了这个rollback数组,KMP搜索就是水到渠成了:
view sourceprint?01 /**
02 * search pattern chars in source chars.
03 *
04 * @param source
05 * @param pattern
06 * @return
07 */
08 public static int searchKMP(char[] source, char[] pattern) {
09 // validation
10 if (source == null || source.length == 0 || pattern == null
11 || pattern.length == 0) {
12 return -1;
13 }
14
15 // get the rollback array.
16 int[] rollback = getRollbackArray(pattern);
17
18 // incremental index of pattern. pointing the char to compare with.
19 int currMatch = 0;
20 int len = pattern.length;
21 // i point the char to compare with
22 for (int i = 0; i < source.length;) {
23 // if current char match
24 if ((currMatch == -1) || (source[i] == pattern[currMatch])) {
25 /*
26 * then each of the indexes adding by one, moving to the next
27 * char for comparation. notice that if currMatch is -1, it
28 * means the first char in pattern can not be matched. so i add
29 * by one to move on. and currMatch add by one so its value is
30 * 0.
31 */
32 i++;
33 currMatch++;
34 /*
35 * if reaches the end of pattern, then match success, return the
36 * index of first matched char.
37 */
38 if (currMatch == len) {
39 return i - len;
40 }
41 } else {
42 /*
43 * if current char mismatch, then rollback the next char to
44 * compare in pattern.
45 */
46 currMatch = rollback[currMatch];
47 }
48 }
49 return -1;
50 }
下面是几个测试方法:
view sourceprint?01 @Test
02 public void testRollBackArray() {
03 int[] expectedRollback = new int[] { -1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0,
04 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0 };
05 int[] rollback = getRollbackArray("PARTICIPATE IN PARACHUTE"
06 .toCharArray());
07 Assert.assertArrayEquals("Rollback array compare failed to match!",
08 expectedRollback, rollback);
09 }
10 @Test
11 public void testKMPSearchMatch() {
12 int matchIndex = searchKMP(
13 "aaaaaababacbaslierjalsdzmflkasjf".toCharArray(),
14 "ababacb".toCharArray());
15 Assert.assertEquals(5, matchIndex);
16 matchIndex = searchKMP(
17 "aaaaaababacbaslierjalsdzmflkasjf".toCharArray(),
18 "aaaaaababacbaslierjalsdzmflkasjf".toCharArray());
19 Assert.assertEquals(0, matchIndex);
20 }
21 @Test
22 public void testKMPSearchNoMatch() {
23 int matchIndex = searchKMP("ABCABCDABABCDABCDABDE".toCharArray(),
24 "hjABCDABD".toCharArray());
25 Assert.assertEquals(-1, matchIndex);
26 }
把这三段代码放在一个类里,KMP搜索就算是完事儿了。
在自己看KMP算法之前,很多文章都说神马KMP有代价,只适合目标字符串很长很长,搜索字符串也很长很长的case。但是就我看下来,KMP对于日常一般的搜索也是有优势的。首先,构建rollback数组计算并不复杂,当然需要一个额外的数组空间。但是对于匹配来说,还是有很大的加速优势的,而且目标字符串不需要回溯。所以KMP唯一的代价就是需要一个额外的数组,实际占用的内存应该是目标字符串的两倍(String是char的数组,char=short,int是char的两倍)。难道,真的是为了节省内存所以不采用KMP搜索?