hdu 2544 最短路 (Bellman_Ford算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544


解题思路:bellman_Ford算法重写这道题目,该算法是解决有向图的常用算法,与dijkstra算法相比,优点是图中可以存在负边,并且可以检测出是否为负值的环

其解题的一般步骤:

第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1n1n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edgeuv)),判断是否存在这样情况:dv) > d (u) + w(u,v)则返回false,表示途中存在从源点可达的权为负的回路。

在这道题中由于题目说明是可达的,并且距离一定大于0 ,不存在负边,所以没进行第三步操作:


代码:

#include<cstdio>
#include<cstring>
using namespace std;
int n,m,flag,dis[10005],mp[105][105];
const int maxn = 0xfffffff;
int a[10005],b[10005],c[10005];
void bellman_ford()
{
	for(int i=1;i<=n;i++)
		dis[i]=maxn;
	dis[1]=0;
	for(int i=1;i<n;i++)
		for(int j=1;j<=m;j++)
		{
			if(dis[b[j]] > dis[a[j]]+mp[a[j]][b[j]])
				dis[b[j]]= dis[a[j]] + mp[a[j]][b[j]];
			if(dis[a[j]] > dis[b[j]]+mp[b[j]][a[j]]) 
				dis[a[j]] = dis[b[j]]+mp[b[j]][a[j]];
		}
}

void init()
{
	for(int i=1;i<=n;i++)
		{
			mp[i][i]=0;
			for(int j=i+1;j<=n;j++)
			{
				mp[i][j]=mp[j][i]=maxn;
			}
		}
}
int main()
{
	while(scanf("%d%d",&n,&m)&&(n||m))
	{
		init(); 
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d%d",&a[i],&b[i],&c[i]);
			if(mp[a[i]][b[i]] > c[i])
				mp[a[i]][b[i]] = mp[b[i]][a[i]] = c[i];
		}
		flag=1;
		bellman_ford();
		if(flag) printf("%d\n",dis[n]);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值