OpenCV3计算机视觉Python语言实现人脸识别笔记

本文记录了作者在学习OpenCV3中人脸识别章节遇到的问题,包括书本代码不完整、原版代码排版错误等。作者通过自行解决,分享了在32位系统上,使用Anaconda2、opencv3.0.0和Python2.7环境下,如何生成人脸识别数据的步骤。
摘要由CSDN通过智能技术生成

     老衲最近在学习《OpenCV3计算机视觉Python语言实现》中文版,学到第五章人脸识别时懵逼了,书上代码都是片段,不会搞啊,不死心找了英文版官网的源代码,找了个遍,发现原版源代码排版错误,把第四章的代码贴到了第五章里。网上搜了一大圈,貌似各位大神都没怎么说到这章。肿么办,硬办。老衲来死磕,下面给出我的方法。老衲平板电脑是七彩虹的i818w,CPU是Z3735F,内存2G,32位操作系统。装了Anaconda2,opencv3.0.0,python是2.7。

    第一步,生成人脸识别数据。还好这段代码比较全,也是正确的。

import cv2

def generate():
    # 老衲把脸的特征文件放在了C盘,用绝对路径调用,书上是相对路径,xml文件在opencv/sources/data/haarcascades里,拷到下面的路径里
    face_cascade = cv2.CascadeClassifier('C:\MyW\cascades\haarcascade_frontalface_default.xml')
    # 打开摄像头,老衲用的是7寸windows平板,带两个摄像头,1是前置,0是后置
    camera = cv2.VideoCapture(1)
    count = 0
    while (True):
        ret, frame = camera.read()
        # 作为初学者,老衲怀疑所有的新东西,print一下看看ret的输出
        print ret
        
        # 把摄像头的每一帧图像转换成灰度图像,这时书上就比较乱了
        # 有用cv2.cvtColor(frame, 1)也有用下面的,其实都一样
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # 检测人脸,没好多说的,自己网上查大神们写的吧,不解释
        faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        # 接下来就是循环保存图片了
        for (x, y, w, h) in faces:
            # 先画一个正方形,这很简单
            img
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值